
Stateful Next Generation Access Control for Fire
Response Control

Alperen Tercan
Computer Science Department

Colorado State University
Fort Collins, Colorado

alperen.tercan@colostate.edu

Abstract—Many real-world problems require flexible, scalable,
and fine-grained access control policies. Next Generation Access
Control(NGAC) framework inherits these traits from Attribute
Based Access Control(ABAC) and provides an intuitive graph-
based approach. In this work, we augment NGAC framework with
multi-level rule hierarchy and stateful policies. Then, we show how
an NGAC policy can be analyzed together with an environment
model using Alloy. This allows defining complex dynamic systems
and keeping policies still tractable for automated analysis. We
present our approach on emergency fire response problem.

I. INTRODUCTION

The vision for Next Generation Access Control(NGAC)[1]
combines previous access models’ strengths like flexibility,
auditability, and allows high level of granularity. In this work,
we extend the NGAC framework to support stateful policies
and rule priorities which are desired in certain settings. Stateful
policies allow policies to be dependent on a global state variable.
Rule priorities extends the two level hierarchy of allowance and
prohibition rules to a multi-level hierarchy to provide a more
flexible control of exceptions. While some of the dynamic
and stateful aspects can be simulated with the obligations
component of an NGAC policy, the complete permissiveness of
obligation operations in the NGAC vision presents a hindrance
both to policy comprehension and to formal policy analysis. In
our work, we work in an obligation operations free environment;
augmenting NGAC with stateful policies and rules priorities
in order to express the dynamism of practical policies, while
ensuring policy comprehension and policy analysis tractability.

NGAC relations are often represented as directed acyclic
graphs(DAGs), so access decisions are computed through
efficient graph traversal algorithms. Similarly, many types
of queries about the policy can be reduced to known graph
problems. While such an approach may allow the use of
very efficient algorithms, it carries the downside of the
requirement of a graph problem being correctly formulated,
and is cumbersome during the policy development process.

A more flexible approach is to use a declarative analysis
engine to succinctly specify and answer complex queries for
policy analysis. While this approach may be slower, it can
support many different query types with minimal overhead to
the administrator. Also, since such complex queries are usually
needed for offline policy analysis, an efficiency-flexibility
tradeoff can be preferable.

Motivated by this observation, we show how our extended
NGAC policies can be encoded in Alloy [2]. Then, we show
how the analysis engine for Alloy can be used to process
and answer complex queries for policy analysis. Finally, we
demonstrate the effectiveness of this approach on a sample
policy defined for a fire emergency response problem.

In this work, we will firstly discuss some related work and
introduce some concepts that we will use in section II and
section III. Then, we will define our NGAC framework in
section IV and show how it can be coupled with environment
model in section V. Finally, we will describe our fire response
problem in section VI and discuss our Alloy implementation
in section VII.

II. RELATED WORK

Related work to this paper can be divided into two groups
with regard to the aspects shared with this work: Using Alloy
for policy analysis and applying NGAC to real world problems.

[3] uses Alloy to detect inconsistencies in both eXtensible
Access Control Markup Language(XACML) policies and their
novel process-based access control work. [4] uses Alloy to
analyze integration of multiple access control policies and
illustrates its capabilities on a hospital management example.
More recent examples of using Alloy for access policy analysis
can be seen in [5] and [6]. The first work uses Alloy to
analyze an Attribute-Based Access Control(ABAC) policy for
Online Social Networks. The second one analyzes a novel
Role-based Access Control(RBAC) variant named Emergency-
RBAC(E-RBAC) which incorporates Break the Glass policies
for emergency response.

On the other hand, there are works that uses NGAC to solve
specific access control problems.[7] uses NGAC for implement-
ing an Authentication, Authorization and Accounting(AAA)
system for industrial IOT systems. [8] focuses on securing
home IOT environments. [9] uses NGAC to secure Mobile
Health applications by protecting sensitive healthcare data from
unauthorized access. Unlike our work, they use graph database
approach for scalable real-time access control queries.

III. BACKGROUND

In this section, we will summarize NGAC, State Machine,
and Alloy to provide the necessary background.

A. NGAC

NGAC is an ABAC framework developed by NIST. It is
still more of a vision, as there is not an accepted standard
formulation of it. However, there exists some commonly used
formulations like [1].

NGAC uses subject and object attributes in order to define
fine-grained rules and still maintain the system scalable.
Subjects and objects are "assigned" to attributes and access
control rules are defined over these attributes. Attributes form
a directed acyclic graph(DAG) which creates a hierarchy
of attributes. This allows definition of rules with different
granularity which gives both fine-grained and scalable policies.
Access is allowed if there is a rule allowing the access and
there isn’t a prohibiting rule. In other words, prohibition rules
take precedence.

In this work, we use a more graph and set theory oriented
notation. Assign relations are denoted as edges in attribute
graphs while Association relations are represented as tuples.

B. State Machine

A finite-state machine(FSM) is a mathematical model of
computation.[10] It has a finite set of possible states, hence
finite-state. It starts in an initial state and it is in exactly one
state at any time. Changes between states are called transitions
and can be dependent on input at that time. Transitions can be
deterministic or non-deterministic.

A deterministic FSM, 𝑀 , can be formally defined by a tuple
𝑀 = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹) where:

∙ Σ is the input alphabet
∙ 𝑄 is a finite non-empty set of states
∙ 𝑞0 ∈ 𝑄 is a initial state
∙ 𝛿 : 𝑄 × Σ → 𝑄 is a state-transition function. Hence,

current state and input determines the new state.
∙ 𝐹 ⊆ 𝑄 is the set of final states.
In a non-deterministic FSM, transition function is 𝛿 : 𝑄×

Σ → 2𝑄, ie. it returns a set of states. The state machine still
can have exactly one state at any time, the returned set of
states shows the options. It can take any of the states in the
returned set; hence, it is non-deterministic.

We say that 𝑀 = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹) accepts a string 𝑤 =
𝑤1𝑤2 · · ·𝑤𝑛 where 𝑤𝑖 ∈ Σ, if and only if a sequence of states
𝑟0, 𝑟1, . . . , 𝑟𝑛 in 𝑄 exists with three conditions:

∙ 𝑟0 = 𝑞0,
∙ 𝛿(𝑟𝑖, 𝑤𝑖+1) = 𝑟𝑖+1, for 𝑖 = 0, . . . , 𝑛− 1,
∙ 𝑟𝑛 ∈ 𝐹

Then, we say that 𝑀 recognizes a language 𝐴 if 𝐴 =
{𝑤 |𝑀 accepts 𝑤}.

C. Alloy

Alloy is language for describing structures and a tool for
exploring them.[2]. It has been used in a wide range of
applications from security mechanism analysis to designing
telephone switching networks.

The main intuition behind Alloy’s approach to analyzing
models and checking assertions is that most of the interesting

and potentially violating examples are relatively small ones.
Thus, there is usually no need to have the capability to
exhausting an entire state space.

Motivated with this intuition, Alloy checks samples of a small
scope of the given model to find satisfying or violating instances.
Alloy can be used to generate both satisfying examples for
a given set of constraints and violating counter-examples for
an assertion on a model. This is done by compiling Alloy
specifications into a SAT-formulae and using known SAT-
solvers to solve them. Once the examples are found, they
can be visualized as relation graphs which gives useful insights
into the designed model and constraints.

Alloy language uses sets, called signatures, to describe a
class of objects. These signatures can be organized in order
to model hierarchical relations between the classes and it can
model many different type of inheritance.

Moreover, relations can be defined over signatures to de-
scribe the interactions between classes. In addition to supporting
object-oriented-like properties to describe compositional rela-
tions, one can explicitly define relations over many signatures.
Such relations can be considered as sets of 𝑛-tuples where
elements of tuples come from the defined signatures.

Then, one can write predicates over the described signatures
and relations and check whether there exist examples in a given
scope that violates or satisfies these predicates.

Scope has a specific definition in Alloy. It is determined as
how many elements of the top-level signatures can have. Alloy
allows setting a global limit that affects all top-level signatures
and setting some of the signatures separately as exceptions to
the general scope.

IV. NEXT GENERATION ACCESS CONTROL

In this section, our NGAC model will be discussed in terms
of policy elements, decision functions, and their algorithmic
equivalents.

A. Policy Elements

In our work, NGAC policy class has the following elements:
∙ A set 𝑆 of subjects, a set 𝑂 of objects, and a set 𝐴𝑐𝑡 of

actions.
∙ A finite set 𝑄 of environment states. Access decisions are

allowed to be state dependent. This increases expressive
power of the policies. Our NGAC framework does not put
any constraints over how states relate to each other and
does not make use of such relations. However, modeling
state transitions allows analysis of a dynamic system
rather than viewing the system as a mere collection of
disconnected snapshots. In the next section, we will show
how stateful policies and such a model can be combined.

∙ A set of subject attributes 𝐴𝑆 , and a set 𝐴𝑂 of object
attributes.

∙ A set of allowance rules, 𝐴𝑙𝑙𝑜𝑤, and a set of prohibition
rules, 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡, where 𝐴𝑙𝑙𝑜𝑤, 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡 ⊆ 𝐴𝑆 × 2𝐴𝑐𝑡 ×
×2𝑄 ×𝐴𝑂. These two sets of rules specify which action
sets are allowed between which subject and which object
attributes in which states.

∙ A priority function 𝑝𝑘 : 𝐴𝑙𝑙𝑜𝑤 ∪ 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡 → 𝑃𝑘

where 𝑃𝑘 = {1, 2, . . . , 𝑘}. Hence, 𝑝 maps allowance and
prohibition rules to a set of 𝑘 priority levels. This 𝑘 should
be chosen according to the application in hand.

∙ Acyclic Attribute hierarchy graphs We have two graphs,
the attribute hierarchy graphs for subjects, and for objects
which specify the hierarchical relationships between the
attributes. We will describe the attribute hierarchy subject
graph 𝐺𝑆 , the graph 𝐺𝑂 = (𝑉𝑂, 𝐸𝑂) is similar. The
graph 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆) is a directed acyclic graph (DAG)
as follows.
– The nodes 𝑉𝑆 consist of all subjects and subject

attributes, that is 𝑉𝑆 = 𝑆 ∪𝐴𝑆 . Notice
– The edges in 𝐸𝑆 specify the attribute relationships to

other attributes or to subjects. All the subject nodes
𝑠 ∈ 𝑆 have in-degree 0 (no incoming edges). An edge
(𝑠, 𝑎) ∈ 𝐸𝑆 where 𝑠 is a subject and 𝑎 is an attribute
indicates the subject 𝑠 has the attribute 𝑎. An edge
(𝑎1, 𝑎2) ∈ 𝐸𝑆 where both 𝑎1 and 𝑎2 are attributes
indicates that any subject that has attribute 𝑎1 also has
attribute 𝑎2 (in the other direction, it could happen that
a subject has attribute 𝑎2, but not 𝑎1). It can be checked
that if a subject has an attribute 𝑎, and if there is a
directed path from 𝑎 to 𝑎′ in 𝐺𝑆 , then the subject also
has attribute 𝑎′.

B. Policy Decision Function

We say an action 𝑧𝑎𝑐𝑡 ∈ 𝐴𝑐𝑡 can be performed by a subject
𝑠 on object 𝑜 in an environment state 𝑞 if and only if:

max{𝑝((𝑎𝑠, 𝑍𝑎𝑐𝑡,𝑍𝑄, 𝑎𝑜))|(𝑎𝑠, 𝑍𝑎𝑐𝑡, 𝑍𝑄, 𝑎𝑜) ∈ 𝐴𝑙𝑙𝑜𝑤, (1)
𝑠 𝑎𝑠, 𝑜 𝑎𝑜, 𝑧𝑎𝑐𝑡 ∈ 𝑍𝑎𝑐𝑡, 𝑞 ∈ 𝑍𝑞}

>

max{𝑝((𝑎𝑠, 𝑍𝑎𝑐𝑡,𝑍𝑄, 𝑎𝑜))|(𝑎𝑠, 𝑍𝑎𝑐𝑡, 𝑍𝑄, 𝑎𝑜) ∈ 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡,

𝑠 𝑎𝑠, 𝑜 𝑎𝑜, 𝑧𝑎𝑐𝑡 ∈ 𝑍𝑎𝑐𝑡, 𝑞 ∈ 𝑍𝑞} (2)

where 𝑠 𝑎𝑠 means there is a path from 𝑠 to 𝑎𝑠 in the
attribute graph.

C. Answering Access Queries

In this section, we will propose a naive solution to Answering
Access Queries, just to give a rough upper bound on the time
complexity added by having priorities.

Formally, we want to answer whether subject 𝑠 can perform
𝑧𝑎𝑐𝑡 on object 𝑜 in environment state 𝑞. The conditions for this
are stated above and they require finding the highest priority
allowance and prohibition rules.

We can reduce this problem into a shortest path problem as
below:

Firstly, build graphs 𝐺𝐴 = (𝑉𝑆 ∪𝑉𝑂, 𝐸𝐴) and 𝐺𝑃 = (𝑉𝑆 ∪
𝑉𝑂, 𝐸𝑃) where

(𝑢, 𝑣) ∈ 𝐸𝐴 ⇐⇒ (𝑢, 𝑣) ∈ 𝐸𝑆 ∨ (3)
(𝑣, 𝑢) ∈ 𝐸𝑂 ∨
(∃!(𝑢, 𝑍𝑎𝑐𝑡, 𝑍𝑄, 𝑣) ∈ 𝐴𝑙𝑙𝑜𝑤 st.

𝑧𝑎𝑐𝑡 ∈ 𝑍𝑎𝑐𝑡 ∧ 𝑧𝑄 ∈ 𝑍𝑄)

and

(𝑢, 𝑣) ∈ 𝐸𝑃 ⇐⇒ (𝑢, 𝑣) ∈ 𝐸𝑆 ∨ (4)
(𝑣, 𝑢) ∈ 𝐸𝑂 ∨
(∃!(𝑢, 𝑍𝑎𝑐𝑡, 𝑍𝑄, 𝑣) ∈ 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡 st.

𝑧𝑎𝑐𝑡 ∈ 𝑍𝑎𝑐𝑡 ∧ 𝑧𝑄 ∈ 𝑍𝑄)

Intuitively, we connect 𝐺𝑆 with 𝐺𝑂 by using 𝐴𝑙𝑙𝑜𝑤 and
𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡 rules after reversing all edges in 𝐺𝑂. Then, we can
reduce the no priorities case in (Prabhu et. al.) to 𝑜 being
reachable from 𝑠 in 𝐺𝐴 but not 𝐺𝑃 . So, we can check whether
there is path from 𝑠 to 𝑜.

When we have rules of different priorities, the problem
becomes a longest/shortest path problem. Assume 𝐺𝐴 and 𝐺𝑃

has a cost function 𝑐 such that:

𝑐(𝑢, 𝑣) =

{︃
0, if (𝑢, 𝑣) ∈ 𝐸𝑆 ∪ 𝐸𝑂

1/𝑝(𝑢, 𝑍𝑎𝑐𝑡, 𝑍𝑄, 𝑣), otherwise
(5)

Note that 𝑝(𝑢, 𝑍𝑎𝑐𝑡, 𝑍𝑞, 𝑣) > 0 =⇒ 𝑐(𝑢, 𝑣) ≥ 0.
Now, the cost of the shortest path from 𝑠 to 𝑜 will be
1/max{𝑝((𝑎𝑠, 𝑍𝑎𝑐𝑡, 𝑍𝑄, 𝑎𝑜))}. Then, we can answer queries
using any shortest path algorithm.

For example, a standard Dijkstra implementation runs
in 𝑂(𝑉 2) time. As mentioned before, no-priorities case is
a reachability problem. This can be solved by DFS/BFS
algorithms which has a time complexity 𝑂(𝑉 + 𝐸).

V. POLICY CONTROLLED STATE MACHINE

By combining the policy with a model of the environment,
we can capture the dynamic nature of a system and analyze
its progress from an initial state under the policy. In order
illustrate this, we’ll assume a finite-state machine as the model
for the environment.

Following the formal definition in subsection III-B, we can
define the environment model 𝑀 = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹) as follows:

∙ The alphabet is Σ = 𝑆 × 𝐴𝑐𝑡 × 𝑂 ∪ {⊥}, where 𝑆 ×
𝐴𝑐𝑡×𝑂 captures user operations on the system and ⊥ is
no-operation symbol which captures environment changes
independent of user activity.

∙ The set of states is 𝑄, which is also the set of states in the
policy. In some cases, many states of finite state machine
might be the same for access control decisions. However,
we can consider such cases as special cases of this general
framework, where significant state aliasing happen.

∙ 𝑞0 ∈ 𝑄 is an environment initial state.
∙ 𝐹 ⊆ 𝑄. The set of final states will be dependent on the

problem. It is possible that 𝐹 = 𝑄, meaning that there
are no failing states.

Transition function is where we will combine the policy with
environment model. The policy will prohibit some transitions of
the underlying environment model. There are two approaches
to implement this.

Firstly, it is conventional to allow 𝛿 to be a partial function,
i.e. it is not defined for all tuples in 𝑄× Σ. If a symbol 𝑥 is

observed in a state 𝑞 but 𝛿(𝑞, 𝑥) is not defined, 𝑀 will reject it.
Then, assuming an underlying transition function 𝛿𝑈 : 𝑄× Σ:

𝛿(𝑞, 𝑥) =

⎧⎪⎨⎪⎩
𝛿𝑈 (𝑞,⊥), 𝑥 = ⊥
𝛿𝑈 (𝑞, 𝑥), 𝑥 ̸= ⊥ and policy allows (𝑥, 𝑞)

undefined, otherwise
(6)

Notice that (𝑥, 𝑞) ∈ 𝑆 × 𝐴𝑐𝑡 × 𝑂 × 𝑄, hence an NGAC
operation. While this approach is theoretically possible, in
practicality, most implementations expect a total function. Then,
we can add sink state that would be entered whenever a
not allowed operation is encountered. If we denote this total
function model with 𝑀𝑇 , 𝑀𝑇 = (Σ, 𝑄 ∪ {𝑞𝑠𝑖𝑛𝑘}, 𝑞0, 𝛿𝑇 , 𝐹
where

𝛿𝑇 (𝑞, 𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞𝑠𝑖𝑛𝑘, 𝑞 = 𝑞𝑠𝑖𝑛𝑘 else;
𝛿𝑈 (𝑞,⊥), 𝑥 = ⊥ else;
𝛿𝑈 (𝑞, 𝑥), policy allows (𝑥, 𝑞)

𝑞𝑠𝑖𝑛𝑘, otherwise

(7)

It is important to note that 𝑀 can be deterministic and
non-deterministic depending on 𝑀𝑈 .

VI. CASE STUDY

To illustrate the benefits of using stateful policies, we will
consider a fire response problem. Assuming a post-disaster
situation, where many buildings in the city have caught fire,
the response should be very organized. Firstly, high importance
buildings like hospitals, warehouses, archives should be given
priority. Also, more locally, if the fire in a part of the building
is put out, the whole building should be secured to prevent fire
from spreading to previously intervened part. For such things,
it is useful to have an access control system that determines
whether an action is allowed or not.

Using the framework that is described in section IV, we can
model the problem as follows:

∙ 𝑆 = {𝐷1}
∙ 𝑂 = {𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5} where 𝑅𝑖 denotes Room 𝑖.

The enumeration of the rooms do not have a meaning.
∙ 𝐴𝑐𝑡 = {𝐷𝑟𝑜𝑝𝑃𝑎𝑦𝑙𝑜𝑎𝑑}. In this simplified version, we

will consider only a single action.
∙ 𝐴𝑆 = {𝐷𝑟𝑜𝑛𝑒}
We will explain the remaining part here, as they are too

long to itemize.
Object attributes are as below. Note that 𝐵𝑖 denotes Building

𝑖 and 𝐹𝑗(𝐵𝑖) denotes Floor 𝑗 of Building 𝑖.

𝐴𝑂 = {𝐶𝑖𝑡𝑦𝐴,𝐻𝑖𝑔ℎ𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒, 𝐿𝑜𝑤𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒, (8)
𝐵1, 𝐵2, 𝐵3, 𝐹1(𝐵1), 𝐹2(𝐵1), 𝐹1(𝐵2), 𝐹1(𝐵3)}

.
The attribute graphs 𝐺𝑆 and 𝐺𝑂 are shown in Figure 1.
There is only a general allowance rule that allows everything

always: 𝐴𝑙𝑙𝑜𝑤 = {(𝐷𝑟𝑜𝑛𝑒,𝐷𝑟𝑜𝑝𝑃𝑎𝑦𝑙𝑜𝑎𝑑,𝑄,𝐶𝑖𝑡𝑦𝐴)}. But
priority of this rule is 1.

There are two prohibition rules. The first one
prevents the drone from going to low importance
buildings before finishing all high importance ones:
(𝐷𝑟𝑜𝑛𝑒,𝐷𝑟𝑜𝑝𝑃𝑎𝑦𝑙𝑜𝑎𝑑,𝑄′, 𝐿𝑜𝑤𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒) ∈ 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡.
Note that 𝑄′ ⊆ 𝑄 and 𝑄′ are the states where there is at least
one 𝐻𝑖𝑔ℎ𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 room on fire.

The second one prevents the drone from leaving a building
that it is in if there is a fire. These are actually a set of rules:
{(𝐷𝑟𝑜𝑛𝑒,𝐷𝑟𝑜𝑝𝑃𝑎𝑦𝑙𝑜𝑎𝑑,𝑄𝑖, 𝐵𝑖)|3 ≥ 𝑖 ≥ 1} where 𝑄𝑖 is the
states where the drone in a building other than 𝐵𝑖 and that
building is not completely secured.

Each state consists of a room status, either 𝐹𝑖𝑟𝑒 or 𝑁𝑜𝐹𝑖𝑟𝑒,
for each room and the current position of the drone. More
formally, 𝑄 = {𝐹𝑖𝑟𝑒,𝑁𝑜𝐹𝑖𝑟𝑒}𝑂 ×𝑂. For this problem, we
don’t consider spread of the fire. Hence, state transitions model
only the operated room becoming 𝑁𝑜𝐹𝑖𝑟𝑒 after payload is
dropped. If a more complex model is desired, a fire spread
model can be developed. This would make the state machine
non-deterministic but it is supported by the framework.

Note this problem definition focuses on the stateful nature
of the problem. Hence, we have a single subject and action.
The supplementary material also includes implementation of a
Department access control which focuses on multiple subject
and action aspect.

VII. ALLOY IMPLEMENTATION

In this section, our approach to analyzing stateful policies
in Alloy will be described. In order to maximize reusability of
the code across different problem instances and classes, we did
a modular implementation where each aspect of the problem
is defined in a seperate file. This section will follow the same
structure with the subsections Graph, Policy, State Machine,
and Problem.

A. Graph: Describing the Graph

In this subsection, we will show how different components
of attribute graphs can be implemented.

1) Introducing Subjects and Objects: We define a Subject
as an abstract signatures with properties NodeID and Subjec-
tActions. NodeID shows which

abstract sig Subject {

NodeID: one AttributeNodeSubject,

SubjectActions: set Actions

}

2) Describing the Attribute Graph: Graphs of subject and
object attributes, 𝐺𝑆 and 𝐺𝑂 are defined separately and their
nodes are represented as separate signatures.

The abstract AttributeNodeSubject as defined as:
abstract sig AttributeNodeSubject{

children: set AttributeNodeSubject

}

Then, each of the vertices in 𝐺𝑆 is a disjoint subset of this
abstract signature. Notice that this signature makes the abstract
signature just a union of the

Figure 1: Attribute Graph for Fire Response as modelled in Alloy.

one sig D1Node extends AttributeNodeSubject {} {

children = Drone

}

Now, we can write a predicate that checks whether an
association path between a given subject and subject attribute
exist in the graph.
pred SubjectDAGPath(sub: Subject,

sub_attribute: AttributeNodeSubject){

(sub_attribute in sub.NodeID.*children)

}

B. Policy

In order to define a policy over the attribute graph, we intro-
duce two more abstract signatures: Allowance and Prohibition.
They are symmetric in their definitions; so, we will just focus
on Prohibition signature.
abstract sig Prohibition {

subject_attribute: AttributeNodeSubject,

action_set: set Actions,

object_attribute: AttributeNodeObject,

state_set: set State,

priority: one Priority

}

Then, we can write concrete allowance rules by extending
this abstract signature and binding concrete values to properties.
We will show how this is done in the Problem section.

Now we will define policy access decisions.

1 pred access_prohibition(sub: Subject, actset: Actions,

2 obj: Object, stateset: set State,

3 p: Priority){

4 all act: actset, state: stateset |_

5 some snode: AttributeNodeSubject,

6 onode: AttributeNodeObject,

7 prohibit_rule: Prohibition |

8 SubjectDAGPath[sub, snode] and ObjectDAGPath[obj, onode] and

9 (snode=prohibit_rule.subject_attribute) and

10 (onode = prohibit_rule.object_attribute) and

11 (act in prohibit_rule.action_set) and

12 (state in prohibit_rule.state_set) and

13 (act in sub.SubjectActions) and

14 (act in obj.ObjectActions) and

15 (ord/lte[p, prohibit_rule.priority])

16 }

This predicate checks whether there is a prohibition rule for
a given (𝑠𝑢𝑏, 𝑎𝑐𝑡𝑠𝑒𝑡, 𝑜𝑏𝑗, 𝑠𝑡𝑎𝑡𝑒𝑠𝑒𝑡) ∈ tuple with a priority 𝑝
or higher. We have a symmetric version for allowance rules
too. Then, we can combine them to answer the access query:

1 pred access_check(sub: Subject, acts: Actions,

2 obj: Object, states: set State){

3 some p: Priority|

4 access_allowance[sub, acts, obj, states, p] and

5 not access_prohibition[sub, acts, obj, states, p]

6 }

𝑎𝑐𝑐𝑒𝑠𝑠_𝑐ℎ𝑒𝑐𝑘 checks whether the maximum priority of
allowance rules is greater than the prohibition rules’.

C. State Machine

In this section, we will describe the environment model as
a finite-state machine, so this part is problem specific.

1 module library/statemachine[subs, objs, acts]

2 open library/time

3 enum RoomStatus{Fire, NoFire}

4

5 // State Set

6 sig AutomatonState{

7 state_map : objs -> one RoomStatus, // lookup table

8 curr: objs // current position of the drone

9 }

10 // Alphabet

11 sig Operation{

12 sub: subs,

13 act: acts,

14 obj: objs

15 }

16 // Initial State

17 fact InitialState{

18 (StateMachine.state.(time/first).state_map = objs -> Fire)

19 }

20 // Transition Function

21 fact TransitionFunction{

22 (all t: Time | t = time/last or

23 let s = StateMachine.state.t |

24 let s' = StateMachine.state.(time/next[t]) |

25 let i = StateMachine.input.t |

26 (s'.state_map = s.state_map++(i.obj -> NoFire)) and

27 s'.curr = i.obj)

28 }

This state machine module is parameterized for graph
description signatures; hence, it can take in any graph without
changing import statements.

AutomatonState signature is the 𝑄 set of the state machine.
It maps rooms to 𝐹𝑖𝑟𝑒 or 𝑁𝑜𝐹𝑖𝑟𝑒 with 𝑠𝑡𝑎𝑡𝑒_𝑚𝑎𝑝 property
and keeps track of the last room with 𝑐𝑢𝑟𝑟. We define 𝑞0 using
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒 fact. Notice that 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒 doesn’t specify
𝑐𝑢𝑟𝑟 property of the first state. It can be specified with a
predicate separately or left unspecified to consider all cases.

Similarly, Operation signature is the alphabet,Σ, of the state
machine.

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 fact describes the transition function
𝛿 by defining valid traces.

In order to answer some specific queries about this state
machine, we add two other predicates: 𝑠𝑡𝑎𝑟𝑡𝑅𝑜𝑜𝑚 and
𝑟𝑜𝑜𝑚𝐸𝑥𝑡.

1 // Use this predicate to determine the room drone starts in.

2 pred startRoom(r: objs){

3 StateMachine.state.(time/first).curr=r

4 }

5 // Check whether there is a time when

6 // there isn't a fire in the room.

7 pred roomExt(r: objs){

8 some t: Time | StateMachine.state.t.state_map[r] = NoFire

9 }

D. Problem

Now that all elements of the policy are complete, we can
put them together. We will firstly write the concrete rules for
this problem.

1 one sig Allowance_BaseAllowance extends Allowance {} {

2 (subject_attribute = Drone) and

3 (object_attribute = CityA) and

4 (action_set = Actions) and

5 (state_set = AutomatonState) and

6 (priority = P1)}

7 // Start With High Importance Buildings

8 one sig Prohibition_ImportanceOrder extends Prohibition {} {

9 (subject_attribute = Drone) and

10 (object_attribute = LowImportance) and

11 (action_set = Actions) and

12 (state_set = {aState: AutomatonState|

13 not AttributeEXT[HighImportance,

14 aState] }) and

15 (priority = P8)

16 }

17 // Check if all children of an attribute ext(inguished).

18 pred AttributeEXT(att: AttributeNodeObject,

19 aState: AutomatonState){

20 all obj: Object |

21 not ObjectDAGPath[obj, att] or

22 aState.state_map[obj] = NoFire

23 }

24 // Don't leave until the building is done

25 one sig Prohibition_FinishBuildingB1_1 extends Prohibition{}{

26 (subject_attribute = Drone)

27 and (object_attribute = B2)

28 and (action_set = Actions)

29 and (state_set = {aState: AutomatonState|

30 not AttributeEXT[B1, aState] and

31 ObjectDAGPath[aState.curr, B1]})

32 and (priority = P7)

33 }

𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒_𝐵𝑎𝑠𝑒𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 is a general allowance rule
with a low priority 𝑃1 that means allow an action unless it is
specifically prohibited. It uses the object attribute 𝐶𝑖𝑡𝑦𝐴, so
it is valid for all objects.
𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛_𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑂𝑟𝑑𝑒𝑟 imposes the rule of

first saving the high importance buildings. It prohibits
𝐿𝑜𝑤𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 objects in states where there is a
𝐻𝑖𝑔ℎ𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 room that is on fire. This is checked by
𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐸𝑋𝑇 predicate, which checks if all objects with the
given attribute have 𝑁𝑜𝐹𝑖𝑟𝑒 status.
𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛_𝐹𝑖𝑛𝑖𝑠ℎ𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵1_1 is actually just one of

the rules for implementing "Don’t leave until the building is
finished" rule. We’ve left the rest out due to space constraints
but they are similar. It is valid if the 𝑐𝑢𝑟𝑟 is in 𝐵1 and 𝐵1 has
a room that is on 𝐹𝑖𝑟𝑒. This would prohibit taking an action
on a different building. This approach requires separate rules
for each building. This works if there aren’t many building in
the problem like our case study.

An alternative approach for problems with many buildings is
creating a 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 sub-signature of 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑁𝑜𝑑𝑒𝑂𝑏𝑗𝑒𝑐𝑡.
While this breaks the homogeneity of attribute nodes, it allows
writing rules that is valid for all buildings and only for
buildings.

After writing the policy rules, we should combine the policy
with environment state machine. Imposing the policy on the
state machine can be done by making sure that each input
symbol is allowed by the policy. This is done by 𝑣𝑎𝑙𝑖𝑑𝐼𝑛𝑝𝑢𝑡𝑠
predicate.

1 pred validInputs{

2 all t:Time |

3 let i = StateMachine.input.t |

4 access_check[i.sub, i.act, i.obj,

5 StateMachine.state.t]

6 }

VIII. CONCLUSION

In this work, we have proposed an extended NGAC frame-
work that both provides more flexibility when describing
policies and remains tractable for automated analysis. Firstly,
our framework supports multi-level hierarchies of allowance
and prohibition rules. This allows having rules with different
precedence levels. Also, our framework supports stateful
policies which are dependent on an environment state. While
this could be considered as just a collection of independent
policies; we show that with a tractable environment model,
such as a finite state machine, combining stateful policies with
the environment model allows automated analysis of a dynamic
system.

We presented our results on emergency fire response example
where a policy is needed to organize an effective response that
respects priorities and does not waste resources. We showed
that we can create a non-deterministic finite state machine to
model both the non-deterministic spread of the fire and impacts
of user inputs like extinguishing fire in rooms. Then, we used
this model with our policy to answer queries like whether the
fire in a room could be put out in a given number of operation
steps.

Because the main focus of this paper is offline audit of
the system and configurations, time and scalability are not
thoroughly investigated. This warrants further study of using
Alloy for larger systems.

REFERENCES

[1] D. Ferraiolo, R. Chandramouli, R. Kuhn, and V. Hu, “Extensible access
control markup language (xacml) and next generation access control
(ngac),” in Proceedings of the 2016 ACM International Workshop on
Attribute Based Access Control, 2016, pp. 13–24.

[2] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 11, no. 2, pp. 256–290, 2002.

[3] W. Hassan, L. Logrippo, and M. Mankai, “Validating access control
policies with alloy,” in Proceedings of the Workshop on Practice and
Theory of Access Control Technologies, Quebec, Canada, 2005, pp.
17–22.

[4] M. Toahchoodee and I. Ray, “Validation of policy integration using
alloy,” in International Conference on Distributed Computing and Internet
Technology. Springer, 2005, pp. 420–431.

[5] P. Bennett, I. Ray, and R. France, “Modeling of online social network
policies using an attribute-based access control framework,” in Interna-
tional Conference on Information Systems Security. Springer, 2015, pp.
79–97.

[6] F. Nazerian, H. Motameni, and H. Nematzadeh, “Emergency role-based
access control (e-rbac) and analysis of model specifications with alloy,”
Journal of information security and applications, vol. 45, pp. 131–142,
2019.

[7] K. K. Kolluru, C. Paniagua, J. van Deventer, J. Eliasson, J. Delsing, and
R. J. DeLong, “An aaa solution for securing industrial iot devices using
next generation access control,” in 2018 IEEE Industrial Cyber-Physical
Systems (ICPS), 2018, pp. 737–742.

[8] B. Bezawada, K. Haefner, and I. Ray, “Securing home iot environments
with attribute-based access control,” in Proceedings of the Third ACM
Workshop on Attribute-Based Access Control, ser. ABAC’18. New
York, NY, USA: Association for Computing Machinery, 2018, p. 43–53.
[Online]. Available: https://doi.org/10.1145/3180457.3180464

[9] R. Basnet, S. Mukherjee, V. M. Pagadala, and I. Ray, “An efficient
implementation of next generation access control for the mobile health
cloud,” in 2018 Third International Conference on Fog and Mobile Edge
Computing (FMEC), 2018, pp. 131–138.

[10] M. Sipser, Introduction to the Theory of Computation. Cengage learning,
2012.

https://doi.org/10.1145/3180457.3180464

	Introduction
	Related Work
	Background
	NGAC
	State Machine
	Alloy

	Next Generation Access Control
	Policy Elements
	Policy Decision Function
	Answering Access Queries

	Policy Controlled State Machine
	Case Study
	Alloy Implementation
	Graph: Describing the Graph
	Introducing Subjects and Objects
	Describing the Attribute Graph

	Policy
	State Machine
	Problem

	Conclusion

