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Deep Reinforcement Learning

A promising approach for optimal control in unknown environments

Learns optimal control from experiences accumulated from
interactions with the environment

Can achieve superhuman performance in certain tasks, eg. Atari
games

Suffers from high sample complexity.
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Transfer Learning

A potential way to solve sample complexity issues

Exploits prior knowledge of a similar task or a similar environment

A hot topic in RL community

What if this is a novel task in an unfamiliar environment?
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Our Work

Goal: Increase sample efficiency without relying on prior knowledge

Idea: Spend some of your time on learning dynamics and transfer the
representations you’ve learned to Q-value prediction

Question: How can this be better than trying to learn Q-function from
the beginning?

Temporal Difference(TD) targets that we need to use are very biased
at the beginning

Bootstrapping from these biased targets can be very unstable in a
function approximation setting
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Architecture

L1 Units

L2 Units

L3 Units

m Units1 Unit

s′ − s ∈ RmQ(s,a) ∈ R

s ∈ Rma ∈ Rn

Figure: A four-layer example of the network
architecture.

Inputs:

State: s ∈ Rm

Action: a ∈ Rn

Outputs:

State change: s′ − s ∈ Rm

Q-value: Q(s, a) ∈ R
Starts with shared layers

Parameters; θC

Forks into two output heads

θS and θQ
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How to train the network? - Loss Functions

1 Minimize TD-error:

Trains θC and θQ - Common layers and Q-head
Learns Q-function

2 Minimize State Change Error

Trains θC and θS - Common layers and state-chage head
Learns state dynamics
We will call this model prediction error.
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How to combine these? - The Schedules

Different schedules of using the loss functions give rise to different
algorithms.

We consider two of them:

1 Pretraining

2 Simultaneous dual-training
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Schedule 1: Pretraining

Out of K iterations of the whole training:

Use only model prediction error in the first Kp iterations.

Use only TD-error in the remaining K − Kp iterations

K and Kp are hyperparameters.
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Schedule 2: Dual-training

At every training iteration:

First, update θC and θQ to minimize TD-error.

Then, update θC and θS to minimize model prediction error.
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Using the schedules

These schedules can be applied on top of different RL algorithms and can
be bundled with other RL ”tricks”.

To illustrate this, we apply our method to two different RL algorithms:

Double DQN(DDQN): An enhanced version of Deep Q-learning.

Twin Delayed DDPG(TD3): A state-of-the-art actor-critic algorithm.
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Used benchmarks

We have tested our approach in several settings:

With Double DQN:

CartPole

Acrobot

MountainCar

With TD3:

HalfCheetah

Walker2D

For CartPole, we used our own implementation. Other DQN tasks are
from OpenAI Gym and TD3 ones are from PyBullet.
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Our CartPole Implementation

Original task:

The pole starts upright.

Goal is to keep it upright.
Figure: Our CartPole Implementation

Our Implementation

The pole starts downright.

Goal is to first swing it up and keep it there.

Can utilize elastic collisions at the boundaries.

Tercan and Anderson (Colorado State) July 2021 16 / 28



Our CartPole Implementation - Customizations

Parameterized state observability and reward sparsity in CartPole:

(Direct) Observability:

Fully Observable: Cart position, cart velocity, pole angle, and pole
angular velocity.

Hidden Cart Velocity: Replaces cart velocity with the previous cart
position. Requires approximating velocity from consecutive frames.

Hidden Cart and Pole Velocities: Also replaces the pole angular
velocity.
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Our CartPole Implementation - Customizations

Reward Sparsity:

Controlled via the number of consecutive upright steps necessary for a
reward.

Reward is 1 iff the pole was upright for the last k steps, 0 otherwise.

State space augmented to include the number of consecutive upright
steps, to keep the task Markovian.

Experimented with k = 1, 5, 15, 25 steps.
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CartPole
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Figure: Learning curves for CartPole with Hidden Cart and Pole velocity with two
different architectures. Median performance.
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Walker2D
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Figure: Comparison of learning curves for two variants with TD3 baseline. Median
performance.
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Impacts of Observability
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Figure: Only Cart Velocity Hidden
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Figure: Both Cart and Pole Velocities
Hidden

Less observability increases the benefits from using our method.
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Impacts of Sparsity
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Figure: Comparison of relative gains
from using dual-training in CartPole.

Rewards given for keeping pole
upright consecutive 1, 5, 15, 20
steps.

When reward sparsity increases,
relative gains increase too.

Promising for harder problems.
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Transfer from Value Function to Model Dynamics
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Figure: Supervised learning of state change
prediction

Blue is initialized randomly.

Orange is initialized with
weights of a Q-function
learned in the same
environment.

Orange converges much
faster.

Further validates the
effectiveness of sharing
features.
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Key Points

Transferring representations learned by state prediction to Q-value
prediction is useful - expected

Pretraining: Training the network for state prediction in the early
iterations is better than training directly for Q-value prediction - less
intuitive

Dual-training: It is possible/faster to train large networks for both
tasks simultaneously

Benefits increase in less observable and sparser settings

A simple approach that can be easily combined with methods
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Future Work

Apply this technique to new RL algorithms

Test this in higher dimensional and more complex control tasks - we
believe that the benefits will be amplified

Investigate combinations with more common uses of learned models
like generating virtual interactions
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Thank You

Thank you for listening!
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