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1 Summary

Combinatorial optimization problems over graphs arise in many real-world problems from
different domains. Most of these problems are NP-hard and real world applications generate
million-sized or larger graphs. Traditional approaches to deal with these can be examined in
three main headings: Exact algorithms, approximation algorithms and heuristics. As the
names suggest, exact algorithms may suffer from very high running times, approximation
algorithms may have weak optimality guarantees and performance, and heuristics may require
substantial problem-specific research.[6] Using data-driven methods to exploit the repeating
nature of underlying structure of the problems is an active research area.

In this project, the use of reinforcement learning for heuristics in graph algorithms is
investigated. This line of research can be seen as an extension of general trend in computer
science research to replace rule-based, hand-crafted heuristics with data-driven methods. The
project focus was identifying possible future research directions rather than a comprehensive
survey of the field.

Although the project was done primarily for educational purposes, it contributes to
the field with a more mathematically rigorous and RL-oriented analysis. Mainly, we for-
mulate the underlying MDP that papers implicitly assume. This is important for fruitful
and mathematically-sound discussions and research for further use of RL in combinatorial
optimization problems over graphs. Also, the report provides a unified analysis of two papers
using the formulated framework; which proves to be useful for juxtaposition of two papers.

Therefore, this project report is written to provide a formulation of the problem as an
RL task, an analysis of the architectures that offered by [6][7], and discuss some potential
problem and improvements identified from these papers.

2 Motivation

Combinatorial optimization problems over graphs arise from numerous application domains,
such as social networks, transportation, telecommunications and scheduling.Moreover, most of
these problems are NP-hard;hence, they do not have efficient exact solutions. Because of their
importance and challenging nature, they have always been of interest to many researchers.
Efforts to tackle these problems can be summarized under three groups: exact algorithms,
approximation algorithms, and heuristics. Exact algorithms are based on enumeration or
branch-and-bound with an integer programming formulation. These methods guarantee
exact optimal solutions; however, they can be prohibitive for large graphs. Polynomial
time algorithms may suffer from weak optimality guarantees, empirical performance, or
they can still be too slow for very large graphs. Therefore, fast and empirically effective
heuristics are often go-to approach in many problems. However, they may require substantial
problem/domain specific research and feature engineering. More importantly, calculation of
heuristics like marginal gain can be computationally too expensive.

Inspired from other fields like Computer Vision and NLP, where data-driven methods
replace hand-crafted features and heuristics of past; using data-driven methods for combin-
atorial optimization problems also becomes popular. Since a problem of this kind usually
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shares the underlying structure across different instances and differ mainly in data; it is
likely that data-driven methods that can exploit this trait will be successful. Morevover,
complexity of a decision can be reduced to well below the heuristics’; resulting in a faster
algorithm. See Section 9.1 for empirical speed-up results.

Due to such potential, following problem will be addressed in this project is:

Problem Statement: Given a combinatorial optimization problem P over graphs drawn
from distribution D, learn a heuristic to solve problem P on an unseen graph G generated
from D?

To tackle this issue, we will start with a framework that can formulate a diverse set of
combinatorial problems.

3 Problem Formulation

[7] provides a general framework for formulating combinatorial optimization problem over
graphs in three components:

Objective function f(G, h(S))
Termination condition t(G, h(S)) with boolean output
Helper function h(G,S)

Note that each of these are functions of a graph G and solution set S ⊆ V. Objective
function determines the objective value associated with G and S. Termination condition
defines when the problem instance is solved. Helper function reduces problems to an iterative
node selection problem. For example, helper function for TSP maintains a tour consisting of
nodes of S. Also, helper function can be generalized to include some heuristics that designer
wants. In [6], helper function for TSP does not simply appends the node to the end of the
tour but it inserts it to the optimal position from |S| positions in the tour.

This formulation is more general than the one in [7].In fact, [7] can be obtained by setting
h(S) = S and t(G, h(S)) = (|S| = b), i.e. it is a special case of this formulation.

Having such a general framework to describe problems makes it possible to describe
generic solutions that problem agnostic. For instance, one of the most common heuristics for
combinatorial optimization problems is Greedy Approach (Algorithm 1). Moreover, for a
large family of problems called submodular maximization, it is proven to have 1− 1

e ≈ 63%
approximation ratio.[5] In other words, the solution that is obtained using Greedy Approach
is guaranteed to be no worse than 63% of the optimal solution. Below its formulation using
the framework above can be seen.

4 MDP Formulation

Markov Decision Processes(MDP) provides a mathematical framework to model decision
making problems. Since the formulation in Section 3 reduces combinatorial problems to an
iterative node selection problem, we can use MDPs to model them, This would allow us to
utilize decades of research to solve MDPs using dynamic programming and reinforcement
learning. An MDP for Section 3 will be as follows:

State s is in the form (G,S) where G ∈ D, S ⊆ D.S, D is the set of graphs we define
our problem over, and D.S = ∪

G′∈D
∪

S′⊆G′.V′
S ′ and G′.V is the set of nodes of graph G′.

Hence, set of states for MDP S = D× D.S Although the notation gets complicated for
the sake of mathematical rigor, intuitively states of MDP are a function of G and S.
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Algorithm 1: The Greedy Approach
Input: G = (V,E), an optimization problem P with optimization function

f(.),termination condition t(.), helper function h(.)
Output: solution set S

1 S ← ∅
2 i← 0
3 while (¬t(G, h(S))) do
4 v∗ ← arg max∀v∈V\S f(S ∪ {v})− f(S) /* Choose the v with the largest

marginal gain */
5 S ← S ∪ {v∗}, i← i+ 1
6 end

Return: S

Set of actions A = ∪
G′∈D

G.V

Transition probability function P (st+1|st, at) =
{

1, if st+1.S = st.S ∪ {at} ∧ ¬t(st.G, h(st.S))
0, otherwise

where s.G is the graph at state s and s.S is the solution set at state s.

Reward function R : S → R, R(st, at) = f(st+1.G, h(st+1.S)) − f(st.G, h(st.S)) =
f(st.G, h(st.S ∪ {at}))− f(st.G, h(st.S))

Note that the defined MDP is a function of D, not G. This is because we want to learn
to solve any graph in D, not only a fixed graph G. From now on, Gt and St will be used as
shorthand for st.G and st.S.

Now, finding an optimal solution to the original problem on graph G is equivalent to
finding the policy π(at|st) that maximizes the reward starting from s0 = (G, ∅). Therefore,
we can consider any method to solve the original problem as a policy π.

For example, the Greedy Algorithm in Algorithm 1 can be expressed using following π:

π(at|st) =

1, if at = arg max
a∈Gt.V

(f(Gt, h(St ∪ {a})))− f(Gt, h(St))

0, otherwise
(1)

Now we will talk about how we can learn an optimal policy π instead of hand-crafting
approximation algorithms or heuristics like the Greedy Approach.

5 Reinforcement Learning to Find the Optimal Policy

Reinforcement learning provides us with the appropriate framework to find an optimal policy
for an MDP. Although several approaches exist, the most common way is computing the
function Q(s, a), the value function associated with state-action pair (s, a). When the exact
Q(s, a) is available, just choosing actions greedily in each state will result in an optimal
policy.However, except for really small MDPs, computing Q(s, a) in closed-form is not
practical.

Therefore, we use an iterative method to estimate. Consider creating a table with rows
and columns represents states and actions, respectively. Then, we can use the following
update rule to update our table. When the table converges, i.e. there are no changes in the
table anymore, this will be a Q-function that yields an optimal policy with greedy actions.

CVIT 2016



23:4 Reinforcement Learning for Combinatorial Optimization over Graphs

Q(st, at)← Q(st, at) + α[r(st, at) + γ arg max
a′∈A

Q(st+1, a
′)−Q(st, at)] (2)

where γ is the discount factor for future rewards. What we’ve described here is called
tabular Q-learning[9], [r(st, at) + γ arg maxa′∈AQ(st+1, a

′)] is TD-target, and [r(st, at) +
γ arg maxa′∈AQ(st+1, a

′)−Q(st, at)] is TD-error.
However, we cannot actually use tabular Q-function in our case as the number of state-

action pairs is virtually infinite. Therefore, we will use function approximation and find
Q̂(st, at) that approximates true Q-function. A common approach is using Neural Networks
as the function approximator. Then, we can use TD-error as the cost function learn the
parameters of the function approximator such that it minimizes this error. To use them
as inputs to NN, we need a fixed-size representation of s and a. Since G and S varies
in size; we need an fixed-size encoding of these. Moreover, a Neural Network has limited
expressive power.Thus, similar graphs G and G′ or solution sets S and S′ should have similar
encodings for better approximation. With some abuse of notation this can be defined as:
An embedding ψ is said to preserve the distances, hence satisfy similarity requirement, if
Q(s2,a2)
Q(s1,a1) ∝

Q(ψ(s2),ψ(a2))
Q(ψ(s1),ψ(a1)) . We will continue to denote any representation function as ψ for

the sake of simplicity and emphasize the interwoven nature of state embeddings and node
embeddings. So, consider ψ as an overloaded method that calls different function depending
on the input type, state or action.

So, now that we look for an encoding with similarity property, this is where node
embedding methods come handy.

6 Node Embeddings

In this section we will discuss ways to find representations for s and a, i.e. graph G, solution
S, and node v. We will also discuss whether they satisfy both fixed-size and similarity
consistency conditions. Actually, both of the methods that we will discuss are instances
of a general framework called Graph Convolutional Network(GCN) that calculated node
embeddings. Algorithm 2 shows the pseudocode for a generic GCN that can be specified to
be any of these methods. In the next subsections, we will discuss how these methods can be
obtained from this generic algorithm.

Algorithm 2: Generic GCN - Node Embedding
Input: Graph G(V, E ,W), node tags(raw features) xv, hyperparameters K
Output: Parameter set Θ

1 Initialize µ0
v ∀v ∈ G.V

2 for k ∈ [0,K − 1] do
3 for v ∈ G.V do
4 N (v)← {u|(v, u) ∈ E}
5 µkN (v)← AGGREGATE({µu,∀u ∈ N (v)})
6 Compute µk+1

v ←F(xv,µkv ,µkN (v,W);
7 end
8 ˆscore(v ← wT · µv,∀v ∈ V)

9 end
Return: µv ∀v ∈ V
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Figure 1 Flowchart for a generic Graph Convolution Network[4]

6.1 Structure2Vec(S2V)
Structure2Vec) In this subsection, a node embedding method, S2V, will be introduced. Then,
a representation for s = (G,S) will be obtained using the node embeddings.

Structure2Vec[3] provides a way to iteratively compute node embeddings for graph G
and raw node features xv for v ∈ V. In one variant, node embeddings are initialized to 0
and updated using the following generic update rule:

µk+1
v ← F (xv, {µku}u∈N (v), {w(v, u)}u∈N (v); Θ)

In this equation,
xv is the raw feature vector for node v
µkv is the embedding of node v in iteration t of embedding process.
µ0
v is 0 as mentioned
µKv is the desired embedding, where T is the depth. Depth T results in using the
embeddings of neighbors up to T -hops.
F is a generic nonlinear mapping, like a NN or kernel function
N (v) is the set of neighbors of node v
w(v, u) weight of edge (v, u)

A particular instance of this generic rule is used in [6]:

µk+1
v ← ReLU(θ1xv + θ2

∑
u∈N (v)

µku + θ3
∑

u∈N (v)

ReLU(θ4w(v, u)))

We will call this S2V-DQN as it is the name for the overall architecture proposed in the
paper. In the paper xv is a binary scalar, such that xv = 1 if v ∈ S, 0 otherwise. But, it can
be generalized to a vector easily. ReLU is the rectified linear unit, defined as ReLU(z) =
max(0, z) and applied elementwise. The parameters are θ1 ∈ Rp×q, θ2,θ3 ∈ Rp×p, and
θ4 ∈ Rp. Here p is the size of µv and q is the size of xv if it is generalized a vector.

There are several issues with this architecture at this stage. Firstly, the update method
is agnostic to relation between w(v, u) and µu. That limits its expressive power. Moreover,
in its update rule it does not use its embedding from the previous iteration. Although
that information is theoretically available from embeddings of neighbors, it is quite indirect.
Finally, although it does not cause any problems at this stage, making embeddings dependent
on solution set S will be a big bottleneck in the future. After each transition of the MDP, i.e.
after each node insertion to S embeddings needs to computed again. Since the embedding
process is inherently recursive, this can be a restraint to solve large graphs.

CVIT 2016
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Now that embeddings for nodes are ready, [6] proposes a way to represent state s = (G,S)
by combining embeddings for nodes: ψ(s) =

∑
u∈G.V µ

K
u . Since computation of µv depends

on weight matrix W and xv, the state will be a function of G and S as expected.
For actions, we will simply use the node embedding for that node. It can be seen that

action representations depend on
Notice that the representations for the state s and action a have fixed size of p which

is the size of embedding vector µ. Hence, it satisfies the fixed-size requirement that we
had. However, since the parameters {θi}4

i=1 are random;it does not necessarily satisfies the
similarity requirement. We will discuss how these parameters are adjusted,learned, to satisfy
similarity requirement after introducing another embedding method. The short answer is
Q-learning.

6.2 GraphSAGE
In this section, we will introduce another architecture for representation.

This method uses the generic architecture of GraphSAGE[4] with some modification[7].
Similar to S2V, GraphSAGE proposes a iterative way to calculate node embeddings with a
different update rule. The generic update rule for GraphSAGE is:

µk+1
v ← F (θk Concat(µkv , AGGREGATEk({µku, ∀u ∈ N (v)})))

µk+1
v ← µk+1

v

‖µk+1
v ‖

where AGGREGATE is an aggregator like MEANPOOL.Concat concatenates to vectors
from Ra and Rb to be Ra+b. Θ = {θk}Kk=1 is the set of parameters that we use for different
iterations.

[7] uses this architecture with following choices:

AGGREGATEk({µku, ∀u ∈ N (v)}) = WeightedMEANPOOL({µku, ∀u ∈ N (v)})

=
∑

u∈N(v)

w(v, u)× µ(t)
u∑

u′∈N(v) w(v, u′)

and

F (.) = ReLU(.)

And it initializes µ0
v = xv where xv is the weighted out degree of node v, i.e.

∑
u∈N(v) w(v, u).

We will call this architecture GCOMB after the name of the overall architecture in [7].
GCOMB has some important differences in comparison to S2V-DQN. Firstly, by aggregating
the neighbor embeddings with Weighted MEANPOOL, they preserve the connection between
w(v, u) and µu. Moreover, it directly uses µkv when computing µk+1

v . Finally, the embeddings
are not dependent on solution set S, importance of which will be discussed later.

After obtaining the node embeddings, [7] proposes following representations for state s
and action a:

ψ(st) = Concat(MAXPOOL({µv′ , v′ ∈ St}),MAXPOOL({µv′ , v′ ∈ Gt.V \ St}))
ψ(at) = µv, v = at.v

So, st ∈ R2p and at ∈ Rp.
Notice that, similar to S2V, fixed-size requirement is satisfied but parameters needs to be

adjusted, learned, for similarity requirement. The learning process will be discussed in the
next section; but short answer is supervised learning.
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7 Learning Embedding Parameters

In this section we will discuss how to learn parameters for the embeddings discussed in
the previous section so they satisfies the similarity requirement. Remember that obtained
representations will be used by Q-approximator and the similarity requirement is needed for
a good Q-approximation, since it has limited expressive power.

Remarkably, for S2V-DQN[6] uses Q-learning to tune its parameters. In other words,
instead of considering the representations as fixed inputs to the Q-approximator, it pipelines
embedding component in front of Q-approximator and learn their parameters collectively.
We will talk about this learning process in Q-approximators and Q-learning section.

7.1 Learning Parameters for GCOMB

Contrary to S2V-DQN, GCOMB uses an intermediate supervision signal to learn the paramet-
ers for embeddings. So, it treats embeddings as fixed inputs. The design of the supervision
signal uses some engineering choices. Firstly, we shall remember the aim of the embeddings:
the states and nodes that are similar in the sense that they would give similar results in the
actual Q-functions should have similar encodings. The problem is that we don’t know what
the actual Q-function looks like. However, if the optimal solutions to the problems were
available, they could be reverse-engineered to find the optimal policy, which uses the actual
Q-function greedily. For instance, if the optimal policy chooses at in state st, it implies that
Q(st, at) >= Q(st, a) ∀a.

However, the optimal solutions are not available either.So, GCOMB uses the greedy
algorithm to find near-optimal solutions.Now that solutions are available, they can be used
to assess how good each node is. Then, embeddings can be learned to get encodings for good
ones close to each other, and encodings for bad ones close each other. At this point, a metric
for quality should be defined. A straight-forward idea is to assign value 1 to each node v ∈ S
where S is the solution set; and value 0 to others.

However, this metric can be misleading as it does not distinguish among good nodes or
among bad nodes, by definition of being binary. This would cause some efficiency issues
in the learning time. Moreover, this is worsened by the fact depending on the nature of
the problem; only one of the two very similar nodes can make it to S. Consider the case
f(G, {v1}) = f(G, {v2}) and f(G, {v1, v2})− f(G, v1) = f(G, {v1, v2})− f(G, {v2}) =, then
only one v1, v2 can be chosen to S.

To tackle this issue, the greedy algorithm is modified to be probabilistic such that instead
of v ← arg max∀v∈V \S f(S ∪ {v})− f(S), we use v ∼ p(v′) ∝ f(S ∪ {v′})− f(S), i.e. nodes
are chosen with probabilities proportional to their marginal gain. Then this algorithm is run
m times and gaini(v) defined as follows:

gaini(vi) =
{
f(St+1

i )− f(Sti ), if node v is added to S in tth iteration of experiment i
0, otherwise

Moreover, to make the resulting embedding generalizable over the same problem with
different termination conditions, a budget b in [7], they modify the termination condition to
be: Terminate experiment i when gaini(vt+1)− gaini(vt) < δ such that vt, vt+1 are chosen
in iterations t and t+ 1 of experiment i, respectively.

Finally, score(v) is defined as follows:

CVIT 2016
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score(V ) =
∑m
i gaini(v)∑m
i f(G,Si)

Since this supervision is not fit to node embeddings directly, as it does not say what
should our embedding actually be, we will pipeline an extra component after the embedding.
Define ˆscore(v) = wTµv and minimize the mean squared error

J({w} ∪ {θk}Kk=1) = 1
|V|

∑
∀v∈V

(score(v)− ˆscore(v))2

So, we can run SGD on parameter set {w} ∪ {θk}Kk=1 with cost function J . Algorithm 3
summarizes the embedding learning process in a simple manner. Note that for the sake of
simplicity we didn’t include batch training.

Notice that w is not actually useful for embedding purposes, it is only used as a part of
parameter sharing in the pipelined architecture. To make the most out of the supervision
signal, we use a minimal output stage of unshared parameter w just an inner product.This
will help require the model to do most of the learning using shared parameters {θk}Kk=1.

Since a simple function of µv is able to predict a metric of the quality of a node, we can
infer that node embeddings µ(.) preserves the distances, hence have the similarity property.

As the embeddings are learned, inputs to Q-approximator are obtained. Now, parameters
of Q-approximator needs to be learned in order to find the optimal policy.

Algorithm 3: GCOMB - Learning the Embeddings
Input: A set of training graphs D, hyperparameters N,K
Output: Parameter set Θ

1 for epoch ∈ [1, N ] do
2 Draw graph G from set D
3 Calculate score(v) for G
4 µ0

v ← xv,∀v ∈ G.V
5 for k ∈ [1,K] do
6 for v ∈ G.V do
7 N (v)← {u|(v, u) ∈ E}
8 µkN (v)←WeightedMEANPOOL({µ,∀u ∈ N (v)})
9 µkv ← ReLU(θkConcat(µk−1

N (v),µk−1
v ))

10 µkv ←
µk

v

‖µk
v‖

11 end
12 ˆscore(v ← wT · µv,∀v ∈ V)

13 end
14 J({w} ∪ {θk}Kk=1) = 1

|V|
∑
∀v∈V

(score(v)− ˆscore(v))2

15 Run SGD on parameter set {w} ∪ {θk}Kk=1 to minimize J
16 end

Return: Θ
17
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8 Q-approximation and Q-learning

Now, we will discuss the architectures these two papers [7][6] proposes to approximate the
actual Q-function. These architectures consist of a function approximator and a technique
to learn its parameters.

8.1 S2V-DQN
S2V-DQN uses Q̂(st, at; Θ) = θT5 ReLU (Concat( θ6

∑
u∈Gt.V µ

T
u , θ7µ

T
v )) where θ5 ∈ R2p

and θ6, θ7 ∈ Rp×p. Remember that µv is a function of {θi}4
i=1 and these parameters still not

learned.
Therefore, Q-learning is used to learn the parameters of both embeddings and Q-

approximator. This can be interpreted as allowing Q-approximator to learn the embeddings
as it likes. Also, the whole pipeline of embedders and Q-approximator can be considered as
one very complex Q-approximator.

Here, a modified version of the TD-target will be used :
∑n−1
i=0 r(st+i, at+i)+γmaxa′ (̂Q)(st+n, a)

where Q̂ is the Q-approximator and n is a hyperparameter. The intuition is to update the
values using long-term returns rather than 1-step rewards; hence, allowing Q̂ to get foresighted
faster. The problem here is that this is not an off-policy method anymore which is a fact
that can hurt the training if not acknowledged and addressed properly.

Consider this, under a policy π, a path p is taken from state st starting with action at to
st+n and total reward is Rt,t+n. Now, since the path p depends on the policy π, total reward
Rt,t+n depends on π too. So, transitions experienced under a different policy is useless.
Notice that when n = 1 the policy dependency is broken, as the Q gives the value for given
st and at. Therefore, at is already chosen, it does not matter which policy π is used. There
are methods to do n−step Q-learning but they require storing more information.

Regardless, the authors keep the remaining algorithm with regular Q-learning and use
replay buffer. Replay buffer is a memory that stores previously experienced transition usually
in the form (st, at, rt, st+1), and it is one of the most common techniques. By allowing the
use of previous experiences multiple times, it increases sample efficiency. Moreover, as it
stored previous experiences to be used later, it stabilizes the learning by preventing forgetting.
Finally, it allows the use of mini-batch training and increase the efficiency of computations.
S2V-DQN changes the stored information to (st, at, Rt,t+n, st+n). As discussed before using
long-term rewards instead of 1-step rewards without proper adjustments to the algorithm
breaks many assumptions behind the analysis of Q-learning. However; it looks like they do
not experience any serious issues empirically. In short, the resulting algorithm can be seen in
Algorithm 4

8.2 GCOMB
GCOMB uses the following as its Q-approximator:

Q̂(st, at,ϑ) = ϑT1 ReLU( (Concat ( ϑ2ψ(st)), ϑ3ψ(at) ))

ψ(st) and ψ(at) are as defined in 7.1. So ϑ1 ∈ R3p, ϑ2 ∈ R2p×2p, and ϑ3 ∈ Rp×p. Learning
part of the GCOMB is same S2V-DQN. It uses Q-learning with same modifications. Only
difference is GCOMB treats the embeddings as fixed-input and trains only Q-approximator
parameters, implied by the change of parameter notation from θ to ϑ.

CVIT 2016
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Algorithm 4: Q-learning
Input: A set of training graphs D, hyperparameters M,N, n, L, T

Output: Parameter set Θ
1 Initialize experience replay memory M to capacity N
2 for episode e = 1 to L do
3 Draw graph G from dataset D
4 Initialize the state to s0 = (G, ∅) /* st = (G,St)) */
5 for step t = 1 to T do

6 at =
{
random node v ∈ G.V \ St, with probability ε
arg maxv∈G.V\St

Q̂(st, v; Θ), otherwise
7 Add at to partial solution: St+1 := St ∪ {at}
8 if t >= n then
9 Add tuple (st−n, at−n, Rt−n, st) to M

10 Sample random batch B ∼M
11 Update Θ by SGD over (y − Q̂(st, at; Θ))2 for B
12 end
13 end
14 end

Return: Θ

Finally, we obtained Q̂ that approximates the true Q-function. Then, if we are solving
the problem over graph G, at each step t, we can simply choose the node with the highest Q
value. That is, at = arg maxv∈G.V Q̂(st, v). Note that for S2V, we still need to recompute
the embedding at each step. Whereas in GCOMB, we can compute the embeddings once at
the beginning and use them as long as we are on graph G.

9 Discussions

In this section, a very brief description of experimental results from the papers[6][7] will be
followed by some discussions relating to possible issues with the proposed methods and some
future work directions.

9.1 Experimental Results
[6] shows that their method can solve graphs of 500-1000 nodes quickly and with a good
approximation ratio. They use TSP, Minimum Vertex Cover, and MaxCut problems as
benchmarks. Moreover, they show that their method can generalize to ∼ 1000 nodes training
samples, even when they just train on graphs of ∼ 50 nodes. [7] puts a great emphasize on
scalability. They show that their method can solve graphs of ∼ 106 nodes 100− 150 times
faster than greedy algorithm while keeping the quality on par with greedy on benchmark
problems Influence Maximization, Maximum Coverage Problem, Maximum Vertex Cover.
We leave a more detailed discussion of experimental results to the respective papers.

9.2 Reliability of Solutions
One important problem with data-driven approaches is that there is no theoretical guarantee
for performance. Although it is possible to derive some statistical guarantees like confidence
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intervals, they are usually based on some assumptions. One of the most important ones is
sampling from a known data distribution and using the same data distribution for training
and testing. In other words, not having any completely novel data in testing. However,
this assumption often is not accurate in real-world data. So, in order to avoid unexpected
behavior of the model, developing methods to assess the novelty of a data point is important.

In this next two sections, we will discuss two approaches for novelty detection.

9.3 Traditional Novelty Detection
Novelty detection is a well-explored field as a result of decades long research. There are
several methods from signal processing, statistics, and machine learning communities. For
example, using auto-encoders is one of these methods[1]. Auto-encoders are usually used
to obtain a low-dimensional representation of a high-level input in an unsupervised way
utilizing neural networks. It has a bow-tie like architecture, the first half is an encoder and
the second part is a decoder. Decoder tries to reconstruct the input, but this requires having
an encoding that captures important features of the input. In a statistical sense, it tunes
its parameters to capture the most of the variance. If a data point results with a large
reconstruction error, it can be concluded that it didn’t occur in the training data enough;
otherwise the model would adjust its parameters to capture it too. Therefore, reconstruction
error can be used as a metric for novelty.

However, most of these methods are not directly applicable to graphs. The problems
with graphs that make traditional machine learning methods fail in combinatorial problems,
still stands with novelty detection. So, we need a representation that can handle graphs of
different sizes and exploits permutation-invariance like features of graphs.

This report explains how representations that satisfy these requirement can be obtained
using Graph Convolutional Networks but those methods can fail here. Because the previous
task was a node selection problem, embeddings for individual nodes were needed. Hence,
local properties of graphs were more emphasized than general ones.This can be seen by
comparing how node and state embeddings were obtained. Usually state embeddings is as
simple as a MEANPOOL or MAXPOOL of node embeddings. On the other hand, novelty
detection does not require embeddings for individual nodes. Only representation of the graph
that captures general properties is needed.Therefore, it is a dilemma between using available
low quality representation and learning a new representation.If we choose learning a new
representation, we need to find a way to cleverly represent the graphs.

In short, traditional approach offers a results from decades-long research but using their
methods over graphs still require substantial research. Moreover, it is very likely to cause
considerable increase in training complexity. Also, the method might be slow over very large
graphs during testing. Therefore, we will propose a different approach that uses TD-error as
novelty metric.

9.4 TD-Error Novelty Detection
In addition to Q-learning, many RL algorithms that use value-learning tries to minimize
TD-error. The intuition is as Q̂ converges to true Q, prediction errors will be minimized.
Also, the more an agent experiences a part of state space, the more its predictions get more
accurate. TD-error gets smaller in frequently-visited parts of the state space whereas it can
be very large in not-visited parts. Then, TD-error can be used as a metric for novelty.

Since, it uses only Q̂, there is no overhead for the training. When testing, Q̂(st, at) and
arg maxa Q̂(st+1, a) will be already calculated to choose appropriate action in timestep t and
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t+ 1, respectively. However, r(st, at) is not always available to the agent, and it may require
some computation. For example, Influence Maximization uses expectation of output of a
stochastic process, as objective function. Therefore, computing reward may require several
simulations; hence, introduce some considerable overhead in testing.

To alleviate this problem, the prediction error can be modified as

Q̂(st, at) + f(Gt,St)− [f(Gt′ ,St′) + Q̂(st′ , at′)]

= Q̂(st, at)− [(f(Gt′ ,St′)− f(Gt,St)) + Q̂(st′ , at′)]

= Q̂(st, at)− [
t′−1∑
i=t

r(si, ai) + Q̂(st′ , at′)]

Note that last equation follows from the definition of R in the MDP definition. This new
error give us a chance to reduce the number of objective value queries by giving up the ability
of checking short-term prediction errors. We believe that it wouldn’t be difficult to find a
good rule of thumb for t′ − t, such that it balances between prediction error information and
computation time.

The main problem with this approach is it lacks any theoretical or empirical analysis for
now. The only paper using a similar idea and could be found at the time this report was
written, is [8]. It uses TD-error as a novelty metric for exploration, as a novel approach for
Intrinsic Motivation. However, it also lacks sufficient analysis.

This concludes our discussion of novelty detection methods for reliability of solutions. It is
important notice that novelty detection does not convey much information about performance
of the model given a data point. There can be graphs that occur frequently during training
but the model cannot solve well because they are inherently not suited to the method.

An alternative task can be predicting the performance of the model on a datapoint,
i.e. optimality of produced solution. However, this is a much harder problem and requires
substantial research.

9.5 Suboptimality of Supervision
In GCOMB, score(v) was used as supervision signal and it was calculated using a variant
of Greedy Approach.(See Section 7.1) The issue is greedy approach produces suboptimal
solutions itself. Hence, the supervision signal is usually very noisy. However, as exact
algorithms are not tractable over large graphs; there is no way to get the optimal solution
for a given graph in an efficient way; unless they come in pairs. If training graphs can be
generated with known solutions in an efficient way, it could be a way to tackle this noisy
supervision signal.

There actually exist some research on this, particularly for TSP. [2] They formulate the
TSP problem on a generic graph as a 0-1 integer LP problem. Then, they create a solvable
proxy problem with same objective function and looser constraint, that is Ωoriginal ⊆ Ωproxy
where Ω is the constraint set. By this design, optimal solutions to the proxy problem
that ∈ Ωoriginal are optimal solutions to the original problem as well. Using primal-dual
methods, analytical expressions for solutions in terms of dual variables are obtained. Then,
they reintroduce loosened constraints.Finally, graphs with known solutions can be obtained
by varying the dual variables.In this way they can generate symmetric, asymmetric, and
triangular-inequality TSP problems.

This paper empirically shows that instances that generated by this method are not easier
than the random ones. Although this is an important result, there are important issues.
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Since this is a problem-dependent method to generate solutions, it can generate only TSP
problems. So, this kind of methods should be developed for each problem unless a general
framework is developed. However, such a framework is either not possible, not practical or
not easy to find in the foreseeable future. The fact that only relevant paper that could be
found is from 1988, reinforces this claims.

10 Conclusion

In this report, our goal was to provide an introduction to the research on Reinforcement
Learning for Combinatorial Optimation over Graphs. Instead of merely summarizing the
papers, we took a more textbook-like approach. Firstly, a unifying problem definition(See
section 3 is provided. Secondly, it is formulated as an MDP and RL approach to solve the
problem is explained. Then, two papers [7][6] are reviewed as example methods taking the
RL approach. Finally, a discussion of several issues that can point to some future research
directions is given. Although this project was done mainly for educational purposes, it
contributes to the surveyed paper by providing the necessary technical background and a
unified interpretation.
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