
Efficient Reward Identification In Max Entropy Reinforcement
Learning with Sparsity and Rank Priors

Mohamad Louai Shehab∗ Alperen Tercan∗ Necmiye Ozay

Abstract— In this paper, we consider the problem of recover-
ing time-varying reward functions from either optimal policies
or demonstrations coming from a max entropy reinforcement
learning problem. This problem is highly ill-posed without
additional assumptions on the underlying rewards. However,
in many applications, the rewards are indeed parsimonious,
and some prior information is available. We consider two such
priors on the rewards: 1) rewards are mostly constant and they
change infrequently, 2) rewards can be represented by a linear
combination of a small number of feature functions. We first
show that the reward identification problem with the former
prior can be recast as a sparsification problem subject to linear
constraints. Moreover, we give a polynomial-time algorithm that
solves this sparsification problem exactly. Then, we show that
identifying rewards representable with the minimum number
of features can be recast as a rank minimization problem
subject to linear constraints, for which convex relaxations of
rank can be invoked. In both cases, these observations lead to
efficient optimization-based reward identification algorithms.
Several examples are given to demonstrate the accuracy of the
recovered rewards as well as their generalizability.

I. INTRODUCTION

Reward identification, or Inverse Reinforcement Learning
(IRL), is the problem of learning rewards from data. The
premise behind IRL is that the reward function serves as
the most succinct representation of an agent’s behavior
[1]. Learning a reward function from demonstrations allows
agents to generalize beyond observed behaviors [1], infer
underlying human intentions [2], and capture pairwise pref-
erences [3], [4]. However, like many inverse problems, IRL is
inherently ill-posed as there may be infinitely many reward
functions consistent with the same observed behavior [5],
[6], [7]. For instance, suppose an agent moves from location
A to location B. One possible hypothesis is that the agent
likes B, but another equally valid hypothesis is that the agent
dislikes A. Both reward hypotheses are consistent with the
observed behavior, highlighting the fundamental ambiguity
in IRL [8].

To address this ambiguity, recent research has shifted
toward learning the entire set of reward functions that can
explain observed behaviors [9], [10], [11], [12]. However,
there is generally no consensus on how to select a spe-
cific reward function from within this set. The choice is
often guided by the requirements of the downstream task
or heuristic considerations. For example, Linear Program-
ming IRL [1] and Max Margin IRL [13] select the reward

This work was supported in part by ONR CLEVR-AI MURI (#N00014-
21-1-2431). The authors are with the University of Michigan, Ann Arbor.
Emails: {mlshehab,tercan,necmiye}@umich.edu

∗These two authors contributed equally.

function that makes the demonstrated policy as optimal
as possible relative to the next-best alternative, effectively
maximizing the opportunity cost—a principle widely studied
in economics, where rational agents seek to maximize the
value of their chosen actions relative to foregone alternatives
[14]. Adversarial IRL [15] aims to find a reward function
that generalizes well across environments, often selecting a
state-only reward that maximizes transferability. Maximum
Entropy IRL [16] selects the reward function that maximizes
the likelihood of the observed demonstrations, assuming
an entropy-regularized policy model. More recently, [17]
introduced a framework for quantitatively selecting the best
reward—potentially outside the solution set—based on a
given target application.

In this work, we study reward identification in finite-
horizon settings with time-varying reward functions. This
is an important generalization for real-world applications
where rewards evolve over time due to changing preferences,
environmental conditions, or task requirements. While most
prior IRL methods assume static rewards, the dynamic setting
makes IRL even more ill-posed, as reward ambiguity can
now arise at every time step [6], [18]. Existing approaches
for dynamic rewards either (1) impose restrictive parametric
assumptions (e.g., Gaussian random walks [19] or gen-
eralized linear models [20]), limiting their expressiveness
to predefined reward dynamics, or (2) assume privileged
knowledge on the number of underlying reward regimes [21].
Relatedly, learning time-varying objective functions is also
considered in the area of inverse optimal control [22], [23].

Building on prior work, we propose a principled frame-
work that systematically incorporates structure-aware pri-
ors—such as minimal reward switches and shared feature
bases—to resolve ambiguity in time-varying reward identi-
fication, enabling flexible yet interpretable reward identifi-
cation without strong parametric assumptions. Our contribu-
tions include (1) a polynomial-time algorithm for recovering
minimally switching rewards, (2) a convex relaxation for
feature-based reward decomposition, and (3) robustness guar-
antees under finite-sample policy estimates. Empirical results
validate our approach in several gridworld environments,
showing improved interpretability and transferability over
existing methods.

II. PRELIMINARIES
A. Notation

R and N are the sets of real and natural numbers respec-
tively. The identity matrix in Rn×n is denoted by In. The
zero matrix in Rm×n is denoted by 0m×n (m are n are

dropped sometimes when they are clear from context). 1m

is the constant vector of ones in Rm. I(x ∈ X) is the indi-
cator function. Given a matrix A, rank(A) and colspan(A)
denote its rank and column span, respectively. When B is
another matrix of compatible dimension,

[
A B

]
denotes

the horizontal concatenation of A and B, and A⊗B denotes
their Kronecker product. Given a vector space V with a basis
B = {v1, · · · , vm}, [w]B is the vector representation of
w in V . For a set S, ∆(S) denotes the set of probability
distributions over it, and |S| denotes its cardinality.

B. Markov Decision Processes

A Markov Decision Process (MDP) is a tuple M =
(S,A, T , µ0, r, γ, T), where S = {s(1), . . . , s(n)} is a finite
set of states with cardinality |S| = n; A = {a(1), . . . , a(m)}
is a finite set of actions with cardinality |A| = m; T :
S × A → ∆(S) is a Markov transition kernel; µ0 ∈
∆(S) is an initial distribution over the set of states; r =
(rt)

T−1
t=0 is a time-varying reward function where each rt :

S ×A → R is the reward function at time step t; γ ∈ [0, 1]
is a discount factor; and T ∈ N is the non-negative time
horizon. An MDP without a reward function, denotedM\r,
is called an MDP model. A policy πt : S → ∆(A) is
a function that describes an agent’s behavior at time step
t by specifying an action distribution at each state. We
denote by π = (πt)

T−1
t=0 the time-varying stochastic policy

throughout the entire horizon. A trajectory τ (of length T)
is an alternating sequence of states and actions (ending with
a state), i.e., τ = (s0, a0, s1, a1, . . . , sT−1, aT−1, sT) with
st ∈ S and at ∈ A. Under a policy π, a trajectory τ occurs
with probability

Pπ
µ0
(τ) = µ0(s0)

T−1∏
t=0

πt(at|st)
T−1∏
t=0

T (st+1|st, at), (1)

which depends on the distribution of initial states, the
policy, and the Markov transition kernel. We consider the
Maximum Entropy Reinforcement Learning (MaxEntRL)
objective given by:

JMaxEnt(π; r) = Eπ
µ0
[

T−1∑
t=0

γt

(
r(st, at) +H(πt(.|st))

)
], (2)

where H(πt(.|st)) = −
∑
a∈A

πt(a|st) log(πt(a|st)) is the

entropy of the policy πt. The expectation is with respect to
the probability measure Pπ

µ0
. We define the optimal policy

π∗
r , corresponding to a reward function r, as the maximizer

of (2), i.e.:

π∗
r = argmax

π
JMaxEnt(π; r), (3)

which is known to be unique [24] up-to accessible states.
The maximum entropy policy is [25], [26], [27]:

π∗
t (a|s) =

eQ
∗
t (s,a)∑

a′∈A
eQ

∗
t (s,a

′)
(4)

where Q∗
t is the optimal soft Q-function at time step t, given

by the following backward-in-time computation:

Q∗
T−1(s, a) = rT−1(s, a),

Q∗
t (s, a) = rt(s, a)+

γEs′∼P (.|s,a)[log(
∑
a′∈A

exp(Q∗
t (s

′, a′)))︸ ︷︷ ︸
≜V ∗

t+1(s
′)

], (5)

with s ∈ S , a ∈ A, for t < T − 1. V ∗
t is the optimal

soft value function at time step t, which is also known as
reward-to-go.

C. Inverse Reinforcement Learning

Inverse reinforcement learning is the problem of inferring
a reward function given an agent’s actions [1]. Concretely,
given an MDP model M \ r and an expert’s time-varying
policy πE, the goal is to find a reward function r such that
πE is the optimal policy for r, in other words r induces πE.
However, this problem is ill-posed because multiple distinct
reward functions can yield the same optimal policy, making
reward inference inherently ambiguous [5], [6], [7], [8]. In
the case of the Max Entropy RL objective, the set of reward
functions that induce a given policy πE can be derived in
closed form [6], [18]. We present the following result.

Lemma 1 ([6]): For any time-varying policy π̄t(a|s) :
{0, . . . , T − 1} × A × S → (0, 1], and for any function
ν : {0, . . . , T} × S → R, the reward function given by

rt(s, a) = log π̄t(a|s)− γEs′ [νt+1(s
′)] + νt(s), (6)

with νT = 0, is the only reward function for which π̄ is
the optimal solution of (3) with optimal soft value function
V ∗
t = νt, for all t.
Similar to [18], we vectorize Equation (6) to define

the set of rewards consistent with a given policy. To this
end, we define the matrix ΦT ∈ RTmn×Tn and the vector
ΞE ∈ RTmn as:

ΦT =


−E γP 0 · · · 0
0 −E γP · · · 0
...

...
. . .

...
...

...
...

. . . −E γP
0 · · · · · · 0 −E

 ,ΞE =


πlog0

πlog1
...

πlogT−1

 ,

(7)
with E = 1m ⊗ In, P =

[
P ⊺
a(1) · · · P ⊺

a(m)

]⊺ ∈ Rmn×n,
where Pa(k) ∈ Rn×n is such that its ij-th entry is given by
T (s(j)|s(i), a(k)), k ∈ {1, . . . ,m} and πlogt is the vectorized
policy given by:

πlogt =


log(πE

t (a1|s1))
log(πE

t (a1|s2))
...

log(πE
t (am|sn))

 ∈ Rmn, t = 0, 1, . . . , T − 1.

The subscript T in ΦT emphasizes the number of block rows.
Letting r = [r⊤0 , · · · , r⊤T−1]

⊤ and ν = [ν⊤0 , · · · , ν⊤T−1]
⊤,

the set of rewards and value functions inducing πE can be
compactly written as:

RE =

{[
r
ν

]
|
[
ITmn ΦT

] [r
ν

]
= ΞE

}
. (8)

III. PROBLEM STATEMENTS

By looking at the definition of RE, it should be clear
from a simple dimension argument that there exists an
infinite number of rewards inducing the same policy πE.
Indeed, the key insight from Lemma 1 is that for any expert
policy πE, one can generate a valid inducing reward r
by selecting an appropriate time-dependent value function
ν and computing r via Equation (6). Hence, recovering
any reward function that induces πE is not particularly
meaningful. Instead, we are interested in recovering reward
functions consistent with prior knowledge we might have
about the structure of the reward function. One such prior is
to find the time-varying reward function inducing πE while
having the minimum number of switches. This is particularly
important in many real-world settings, where less erratic
reward functions enhance interpretability and better reflect
underlying task structures (Occam’s razor). This gives rise
to the first problem considered in this paper, formally given
as:

Problem 1: Given an MDP model M \ r and a time-
varying policy πE, find the reward function r inducing πE

with the least number of switches, i.e. rt = rt+1 for as many
t’s as possible.

Another approach is to find a reward function that induces
πE, expressed in terms of a structured basis, commonly
referred to in the IRL literature as featurization [13], [28],
[29]. Specifically, the reward function at time t is given by:

rt(s, a) =

K∑
k=1

αk,tuk(s, a) = Uαt, (9)

where U ∈ Rmn×K is a feature matrix, with each
column corresponding to a feature function uk, and
αt = [α1,t, . . . , αK,t]

⊺ represents the corresponding feature
weights. However, unlike standard IRL settings where the
feature matrix U is typically predefined, in our case, U is
unknown. This leads to the second problem we address:

Problem 2: Given an MDP model M \ r and an expert
policy πE, determine a candidate feature matrix U and
weight vectors {αt} such that the reward function rt = Uαt

induces πE.
Both problems 1 and 2 can be extended to the setting

when only a finite-sample estimate π̂E of the expert policy
is available, rather than the true policy πE. In Section V, we
address this practical scenario by introducing robust variants
of RE that accounts for estimation errors and provides
probabilistic guarantees.

IV. METHODOLOGY

Throughout this section, our solutions will be different
instantiations of the following optimization problem:

min
r,ν

ℓ(r)

s.t.
[
r
ν

]
∈ RE.

(P)

for some loss function ℓ : {r0, · · · , rT−1} → R. Prob-
lem (P) serves as our unifying optimization framework,
where domain-specific knowledge is systematically incorpo-
rated through tailored loss functions ℓ, while the constraint
ensures consistency with the expert policy.

A. Minimally Switching Rewards

Problem 1 can be reformulated naturally as a sparsification
problem, where the objective is to maximize the number
of zero entries in an appropriately defined vector-valued se-
quence. In particular, we define the differences ∆rt between
the rewards at every two consecutive time steps:

∆rt = rt+1 − rt, t = 0, · · · , T − 2, (10)

and consider the sequence {∆rt}T−2
t=0 . It should be clear

that any non-zero element ∆rt corresponds to a switch in
the reward function r. Hence, to minimize the number of
switches, a natural optimization problem is the following:

min
r,ν

∥{∆rt}T−2
t=0 ∥0

s.t.
[
r
ν

]
∈ RE,

∆rt = rt+1 − rt, t = 0, · · · , T − 2,

(P1)

where ∥{∆rt}T−2
t=0 ∥0 ≜ |{t | ∥∆rt∥ ≠ 0}|. While maxi-

mizing sparsity is a non-convex and hard to solve problem
in general [30], [31], there exist efficient convex relaxations
based on variants of ℓ1-norm [32]. Moreover, as we show
next, thanks to the additional structure in RE, problem (P1)
admits an exact polynomial-time solution.

In what follows, we devise a greedy algorithm to solve
problem (P1) and prove its correctness. To do so, we define
the parametric truncated counterpart of Equation (8) with
time-invariant rewards as:

Rinv
i:j (νo) =


[
r
ν

]
|
[
Ē Φj−i

0
γP

] r
ν
νo

 = ΞE
i:j

 (11)

where Ē = 1m ⊗ Imn and ΞE
i:j = [πlogi

⊺
, . . . , πlogj−1

⊺
]⊺ ∈

R(j−i)mn.
Our strategy is to find intervals over which a time-

invariant reward can explain the given policy while ensuring
consistency with the overall policy. In particular, we do this
by working backward in time and iteratively extending an
interval until a time-invariant reward is not feasible over
this interval and starting a new interval from that point.
Algorithm 1 implements this idea by following a bisection
approach to find the time step where the time-invariant
reward becomes infeasible.

Algorithm 1 Greedy Interval Partitioning

Input: Horizon: T , Transition Matrix: P, Policy π
Output: Sequence of minimum number of switch times Z

and corresponding reward functions R
1: Z ← (), R← (), Vt ← 0 ∀t : 0 ≤ t ≤ T
2: l← −1, u← T , j ← T − 1, τ ← T
3: while j ≥ 0 do
4: if Rinv

j:τ (Vτ) ̸= ∅ then
5: u← j,
6: Pick r̄, ν̄ from Rinv

j:τ (Vτ)
7: else
8: l← j
9: if u = l + 1 then

10: Prepend u to Z and r̄ to R
11: Vt ← ν̄t ∀t ∈ [u, τ − 1]
12: τ ← u, l← −1
13: end if
14: end if
15: j ← ⌊(l + u)/2⌋
16: end while
17: Prepend r̄ to R and Vt ← ν̄t ∀t ∈ [0, τ − 1]
18: return Z, R

Theorem 1: Algorithm 1 returns an optimal solution to
Problem (P1). Moreover, it has polynomial-time complexity.

Before proving the theorem, we explain some of the
notation in the algorithm. By convention, the set Rinv

−1:j(ν) is
considered to be empty for all j and ν. Moreover, Vt denotes
reward-to-go at time t, i.e., it is equal to νt. The variables l
and u are auxiliary bounds used in the bisection procedure,
representing the current lower and upper bounds for the
switch time being searched. Finally, τ is the horizon of the
current interval for which the switch time is being searched.
The following two lemmas will be useful in proving this
theorem.

Lemma 2: Let the switch times returned by Algorithm 1
be Z = [tk, tk−1, . . . , t1] with ti > ti+1 and define t0 = T .
There is not any feasible time-invariant reward function for
interval t ∈ [ti+1−1, ti−1] for any i ≥ 0, i.e.,Rinv

ti+1−1:ti(νo)
is empty for all νo ∈ Rn.

Proof: First, we note that per Lines 9 and 10 of the
algorithm, u is added as the new switch time only after
Rinv

u−1:τ (Vτ) is found empty. Then, for all i, Rinv
ti+1−1:ti(Vti)

is empty. Next, we will show that this is equivalent to
Rinv

ti+1−1:ti(νo) being empty for all νo ∈ Rn.
It is trivial that if Rinv

ti+1−1:ti(νo) is empty for all νo ∈ Rn,
Rinv

ti+1−1:ti(Vti) is empty as well. For the other direction,
assume there exists ν̄o such that Rinv

ti+1−1:ti(ν̄o) is not empty
and pick (r, ν) ∈ Rinv

ti+1−1:ti(ν̄o). Define r′ as r′T−1(s, a) =
rT−1(s, a) + γEs′∼P (.|s,a)[ν̄o(s

′)− Vti(s
′)] and r′t(s, a) =

rt(s, a) for all t < T −1 and for all a and s. Then, it can be
seen by inspection that (r′, ν) is in Rinv

ti+1−1:ti(Vti). Hence,
Rinv

ti+1−1:ti(Vti) is not empty.
Lemma 3: Let the switch times returned by Algorithm 1

be [tk, tk−1, . . . , t1]. For any feasible switch time sequence

[t′k′ , t′k′−1, . . . , t
′
1]:

ti ≤ t′i ∀i : 1 ≤ i ≤ min(k, k′)

Proof: We will show this by induction on i. At each
step, we will use contradiction to show that t′i cannot be less
than ti.

Base case (i = 1): Assume t′1 < t1; hence, t′1 ≤ t1 − 1.
Then, by Lemma 2, [t′1, T − 1] cannot have a feasible time-
invariant reward. Thus, t′1 must be greater than or equal to
t1.

Induction Step: Assume that t′i ≥ ti and t′i+1 < ti+1.
Then, [ti+1− 1, ti− 1] ⊂ [t′i+1− 1, t′i− 1]. Hence, the time-
invariant reward that is feasible for [t′i+1−1, t′i−1] is feasible
for [ti+1 − 1, ti − 1] as well. This contradicts Lemma 2.

Now we are ready to prove Theorem 1.
Proof: (of Theorem 1) Assume that Algorithm 1 returns

a sequence of reward functions R = [r̄k+1, r̄k, . . . , r̄1] and
switch times Z = [tk, tk−1, . . . , t1]. We start our proof by
showing that the returned rewards form a feasible solution
to Problem (P1).

Let ν be a reward-to-go function such that for all 1 ≤ i ≤
k+1, [r̄i, νti , νti+1, . . . , νti−1−1] is in Rinv

ti:ti−1
(νti−1

), where
t0 and tk+1 are taken as T and 0, respectively. It can be seen
by inspection that V populated on Line 11 of Algorithm 1
is such a ν. Now, define rt to be r̄i for all ti ≤ t < ti−1 for
all i. Then, [r0, . . . , rT−1, ν0, . . . , νT−1] is in RE. Hence,
Algorithm 1 yields a feasible solution.

Now, by contradiction, assume that Algorithm 1 returns
a feasible but suboptimal solution. Then, there exists a
feasible solution with switch times [t′k′ , t′k′−1, . . . t

′
1] with

k′ < k. If [0, t′k′] is a valid interval that can be solved with
a time-invariant reward, Rinv

0:t′
k′
(νo) is not empty for some

νo. However, by Lemma 2, Rinv
tk′+1−1:tk′ (νo) is empty for

all νo. Since [tk′+1 − 1 : tk′] ⊆ [0, t′k′] by Lemma 3, this
is a contradiction. Therefore, Algorithm 1 finds an optimal
solution.

Finally, the runtime of the algorithm is primarily dom-
inated by the operation in Line 6, which involves solving
a system of equalities with (m + τ − j)n variables and
mn(τ − j) constraints, which can be done in polynomial-
time. This operation is performed O(k log T) times. There-
fore, the overall algorithm runs in polynomial-time.

We also remark that when the reward function is known
to be featurized—that is, all rt can be expressed as weighted
sums of common feature functions—the problem can be
further simplified by restricting the search to the space of
feature weights, as described in [18]. However, this requires
the knowledge of the feature functions. In the next section,
we show how this requirement can be avoided.

B. Feature-Based Rewards

If the reward function at time step t is expressed as
rt = Uαt, optimizing over both U and αt leads to a
bilinear optimization problem. Further, since the number of
features is unknown, the dimension of U is an additional
decision variable. Bilinear programs are generally NP-hard
due to their inherent non-convexity, and even checking local

optimality can be computationally intractable [33], [34].
Our key insight to avoid solving a bilinear program is that
featurization imposes a low-rank structure on the reward
function, which remains consistent across the entire horizon.
This means that while the reward at each time step may vary,
it lies in a subspace spanned by a fixed set of basis functions.
Consequently, instead of independently optimizing U and
αt, we can directly model the reward function as a low-
rank matrix, where each column corresponds to the reward
at a given time step. By enforcing a low-rank structure on
this matrix, we transform the problem into one of recovering
a structured representation of rewards rather than solving a
bilinear optimization. Consequently, our objective is:

min
r,ν

rank(
[
r0 · · · rT−1

]
) s.t.

[
r
ν

]
∈ RE. (P2)

The feature matrix and weights can then be recovered from
the optimal solution of (P2) as follows:

U = colspan(
[
r0 · · · rT−1

]
),

αt = [rt]U , t = 0, · · · , T − 1. (12)

While Problem (P2) is still a difficult non-convex problem
[35], several heuristics have been developed to handle it, e.g.,
see [36], [37]. Notably, it has been established in [38] that
the nuclear norm, under some regularity assumptions, serves
as the tightest convex approximation for the rank function,
generalizing ℓ1-norm based relaxation of the ℓo-quasinorm to
the rank function. Thus, instead of Problem (P2), we solve:

min
r,ν

∥
[
r0 · · · rT−1

]
∥∗ s.t.

[
r
ν

]
∈ RE. (P2-approx)

where for a given matrix A ∈ Rm×n, its nuclear norm
∥A∥∗ =

∑min(m,n)
i=1 σi(A) with σi denoting the singular val-

ues of A. To get a better approximation of the rank function,
nuclear norm relaxation can be further refined by considering
an iterative reweighted variant [39]. While we tried this
variant in our experiments, the results remained identical to
those obtained with the nuclear norm formulation, which was
sufficiently accurate for our problem.

V. GIVEN DEMONSTRATIONS

The set RE depends on the expert policy through ΞE.
However, in practice, the true expert policy πE is typically
unknown and a finite-sample estimate π̂E must be used in-
stead. We use the following lemma to motivate our approach
in this case.

Lemma 4: Fix a timestep t, state s ∈ S, and number
of samples n(t, s) ∈ N. Assume there exists a function
αt(s, ·) : A → R such that αt(s, a) ≤ πE

t (a|s) for all a ∈
A. Let {ai}n(t,s)i=1 be a collection of actions independently
drawn from the policy πE

t (·|s). Define the empirical estimate
π̂E
t (a|s) as:

π̂E
t (a|s) =

1

n(t, s)

n(t,s)∑
i=1

I[ai = a]. (13)

Given a confidence level δ ∈ (0, 1), the following inequal-
ity holds for all actions a ∈ A:

P
(∣∣log π̂E

t (a|s)− log πE
t (a|s)

∣∣ ≤ ϵ(t, s)

αt(s, a)− ϵ(t, s)

)
≥ δ.

(14)
where:

ϵ(t, s) ≜

√
1

2n(t, s)
log

(
2

1− δ

)
. (15)

Proof: Consider a fixed action a and let
{X1, X2, . . . , Xn(t,s)} be random variables defined
such that Xi = I[ai = a] for all i. Note that
π̂E
t (a|s) = 1

n(t,s)

∑n(t,s)
i=1 Xi and E[π̂E

t (a|s)] = πE
t (a|s).

Then by Hoeffding’s inequality, for any ϵ > 0 we have:

P
(
|π̂E

t (a|s)− πE
t (a|s)| ≤ ϵ

)
≥ 1− 2e−2n(t,s)ϵ2 .

Picking ϵ = ϵ(t, s) as defined in Equation (15) yields:

P
(
|π̂E

t (a|s)− πE
t (a|s)| ≤ ϵ(t, s)

)
≥ δ. (16)

To go from Equation (16) to Equation (14), we need a
lower bound for both π̂E

t (a|s) and πE
t (a|s). To this end,

define the events E1 ≜ {|π̂E
t (a|s)− πE

t (a|s)| ≤ ϵ(t, s)} and
E2 ≜ {min(π̂E

t (a|s), πE
t (a|s))) ≥ αt(s, a)− ϵ(t, s)}.

Since αt(s, a) ≤ πE
t (a|s), we have E1 ⊆ E2. Thus

P(E1, E2) = P(E1) ≥ δ. (17)

Define E3 ≜ {| log π̂E
t (a|s) − log πE

t (a|s)| ≤
ϵ(t,s)

α(t,s)−ϵ(t,s)},
which is the event of interest in Inequality (14). By Mean
Value Theorem we have that for some ξ ≥ 0 between
π̂E
t (a|s) and πE

t (a|s) the following holds:

log π̂E
t (a|s)− log πE

t (a|s) =
1

ξ
(π̂E

t (a|s)− πE
t (a|s))

This implies that:

| log π̂E
t (a|s)− log πE

t (a|s)| ≤
|π̂E

t (a|s)− πE
t (a|s)|

min(π̂E
t (a|s), πE

t (a|s)))
,

from which we see that E1 ∩ E2 ⊆ E3. Therefore, by
Equation (17), we get P(E3) ≥ δ, which is the desired result.

In practice, the data is given in the form of a set of trajec-
tories D = {τi}Ni=1 with τ i = (si0, a

i
0, s

i
1, . . . , a

i
T−1, s

i
T). For

a given state s and time t, we define the number of samples
as n(t, s) ≜

∑N
i=1 I[sit = s] and set of actions sampled from

πt(·|s) as {ait | sit = s}. Note that n(t, s) is independent of
the sampled actions as actions sampled at time t only impacts
future states. Then, we construct a sample consistent estimate
of the true policy πE by computing the relative frequency of
actions at each state for each t from 0 to T − 1 as shown in
Equation (13).

Note that, while using maximum entropy policies guar-
antees that πt is always positive, a lower bound function
αt(s, a) may not be known. In practice, we replace αt(s, a)−
ϵ(t, s) in Equation (14) with π̂E

t (a|s)−ϵ(t, s). When n(t, s) is
large enough, this gives a good lower bound to both π̂E

t (a|s)
and πE

t (a|s).
While increasing the number of samples reduces esti-

mation error as can be seen in Equation (15), even small

inaccuracies can disrupt important structural properties, such
as sparsity or low-rank characteristics, inherent in the true
reward function. To address this issue, we introduce a
policy-noise-robust variant of RE, ensuring that solutions
remain feasible for at least one possible realization of ΞE.
Specifically, given a set of trajectories D and a confidence
level δ, we estimate the policy using Equation (13) and
obtain the estimated policy vector Ξ̂E as in Equation (7).
We also construct an error bound vector b from the upper
bound in Equation (14) as follows. Define the error vector
ϵ ≜ [ϵ⊤0 , ϵ

⊤
1 , . . . , ϵ

⊤
T−1]

⊤ ∈ RTmn, where for each t ∈
{0, . . . , T − 1}, we have ϵt ≜ 1m⊗ [ϵ(t, s1), . . . , ϵ(t, sn)]

⊤.
Then, b ∈ RTmn

≥0 is given by b = ϵ ⊘
(
exp

(
Ξ̂

E
)
− ϵ

)
,

where exp(·) and ⊘ denote elementwise exponentiation and
division, respectively.

Finally, we define the robust reward set:

R̂E =

{[
r
ν

]
| Ξ̂E − b ≤

[
ITmn ΦT

] [r
ν

]
≤ Ξ̂E + b

}
.

(18)
In our numerical experiments when we only have access to

demonstrations, we replace RE with R̂E in the correspond-
ing optimization problems.

VI. EXPERIMENTS
The goal of our experiments is to answer two questions 1:

Q1. How well can our frameworks recover the ground-truth
time-varying rewards?

Q2. Can our recovered rewards transfer to novel environ-
ments?

To answer Q1, we evaluate Problems (P1) and (P2-approx)
in the 5x5 gridworld shown in Figure 1a. Each cell
of the gridworld represents a state of the MDP. The
actions available for the agent in each state are:
{up, down, left, right, stay}. Upon taking an action, the
agent transitions to the desired cell with a probability 1−pw,
and transitions to a neighboring cell in one of the cardinal
directions with a probability pw, representing the wind
probability. The MDP has two important landmarks: a home
state (called shome) at the top left, and a water state (called
swater) in the bottom middle. For example, an agent with
high reward at the home state tries to reach the home as fast
as possible. An agent with a uniform reward everywhere
tries to explore the environment equally. By varying the
rewards over time, we can capture and model a multitude
of complex behaviors. For example, the agent might want to
explore the environment at first. During exploration it gets
“thirsty”, and thus the reward switches to reach the water
state as fast as possible. Eventually, the agent wants to go
back to the home state. A horizon of 50 timesteps is used
in all our experiments. Our frameworks improve over other
baselines in qualitatively recovering the ground-truth weights
and feature functions.

To answer Q2, we evaluate our frameworks in a transfer
learning setting, where the reward function is learned in

1The code for these experiments is available at
https://github.com/mlshehab/sparse reward identification.

Ñ

r

(a) Open

Ñ

r

(b) Blocked

Ñ

r

(c) Sticky

Fig. 1: 5x5 Gridworlds used in the experiments.

the gridworld of Figure 1a, but optimized in a different
gridworld with different dynamics, shown in Figures 1b and
1c. The difference in the dynamics is characterized by adding
blockings, shown as a dashed line, and adding “sticky”
states, shown in yellow, where all actions result in staying
in that state with a probability 0.8. We show that rewards
learned with our algorithms still produce optimal or near-
optimal behaviors, while baseline methods produce either
lower quality policies or rewards that generalize poorly.

A. Experiment 1: Minimally Switching Rewards
In this experiment, we evaluate the performance of Al-

gorithm 1. We construct tasks by dividing the time horizon
into k + 1 intervals, where k = 5 switch points are chosen
uniformly at random. These switch points correspond to
time steps where ∆rt ̸= 0. We begin with a time-invariant
reward function, with values sampled uniformly between 0
and 1, for the first interval. For each interval, we generate
a time-invariant reward function by perturbing the previous
interval’s reward using a uniformly sampled perturbation
from [0, β]mn. We vary β from 0.1 to 0.4 for each subsequent
interval to induce reward changes of increasing magnitudes.

To evaluate the accuracy of the inferred switch times, we
consider the resulting intervals as clusters. The predicted
intervals are evaluated against the true interval partitioning
using the Adjusted Rand Index (ARI), as defined in Equation
5 of [40]. The ARI is a widely used measure for comparing
two clusterings: it equals 1 when they agree perfectly and has
an expected value of 0 under random labeling (with possible
negative values if agreement is worse than chance).

To study the impact of using a finite-sample estimate of
the policy πE, we compute the ARI scores of the switch
times identified by Algorithm 1 when run on estimates
of πE obtained from varying numbers of trajectories. The
experiment is repeated with 10 different reward functions.
We report the mean and standard deviation of the ARI scores
for each setting in Table I. As seen in Table I, increasing
the number of trajectories leads to higher ARI scores and
reduced variance. Our algorithm eventually recovers the true
switching times. It is important to observe that the number
of switches our algorithm identifies is always less than or
equal to the true number of switches, hence our algorithm is
able to explain the data with a simpler reward model when
there is more uncertainty in the low-data regime.

B. Experiment 2: Feature-Based Rewards
For this experiment, we generated two ground-truth feature

functions u1, u2 : S × A → R representing the home state

Number of Trajectories ARI # of Switches
True Policy 1.000 ± 0.000 5.0 ± 0.0
8,000,000 1.000 ± 0.000 5.0 ± 0.0
4,000,000 0.968 ± 0.040 4.8 ± 0.4
2,000,000 0.881 ± 0.118 4.1 ± 0.3
1,000,000 0.726 ± 0.100 3.5 ± 0.5
800,000 0.674 ± 0.179 3.0 ± 0.45
400,000 0.566 ± 0.196 2.0 ± 0.63
200,000 0.393 ± 0.098 1.1 ± 0.3

TABLE I: Mean and standard deviation of ARI and the number
of switches found across different dataset sizes over 10 random
reward functions. The row labeled “True Policy” corresponds to
results obtained using the exact policy πE instead of trajectory data.
Confidence level δ is set to 0.9999 when defining the robust reward
set.

and water state positions. The reward function is given by:

rtruet (s, a) = α1,tu1(s, a) + α2,tu2(s, a)

where u1(s, .) = 1 if s = shome, and 0 otherwise. Similarly,
u2(s, .) = 1 if s = swater, and 0 otherwise. We generate
the time-varying weights αt following a Gaussian random
walk as in [19]. After finding the expert policy πE, we
solve (P2-approx) to find both the feature functions and the
weights. The recovered time-varying weights are shown in
Figure 2, which also includes results with policies esimated
from demonstrations. The recovered feature functions2 are
shown in Figures 3 and 4 . As a benchmark, we implemented
the dynamic IRL method from [19]. We note that the number
of demonstrations fed to the method from [19] is much fewer
than what our method used due to scalability issues with
the former (yet we used 5 times the number of trajectories
reported in [19]). Since the reward decomposition in (12)
is not unique, there exists infinitely many valid choices of
basis vectors U , leading to different recovered parameters for
each basis choice. Thus, to qualitatively compare the ground-
truth and recovered weights, and generate meaningful vi-
sualizations, we apply a two-step post-processing approach.
First, we identify a basis U that satisfies the condition in
(12). We then perform a projection step to align this basis
with the ground-truth feature vectors, yielding a transformed
basis U ′. Next, we express the recovered weights relative
to B′ and apply a standardization step to eliminate trivial
invariances due to shifting and scaling. This ensures that
the recovered weights are comparable to the ground-truth
while preserving their relative structure. Figures 3 and 4
compare our recovered feature mapping with that of [19]. By
enforcing a low-rank decomposition in the objective function,
our method successfully recovers the true feature functions,
whereas dynamic IRL [19] produces a reasonable but noisier
approximation.

For our transferability experiments, we implemented an
additional baseline: the finite-horizon MaxEnt IRL of [16],
which recovers a time-invariant reward. To assess transfer-
ability, we first solve for the reward function using different
methods/baselines with the optimal ground-truth policy in the

2Since the feature vectors are |S| × |A| dimensional vectors, we only
show the first |S| components, which correspond to the first action. The
plots are the same for the remaining actions.

Fig. 2: Recovered weights for Experiment 2.

Fig. 3: Recovered feature vector for the home state: (left) Ours vs.
(right) [19].

Fig. 4: Recovered feature vector for the water state: (left) Ours vs.
(right) [19].

Open Gridworld as input. We then compute the optimal poli-
cies of these recovered rewards in the novel environments,
namely the Blocked Gridworld and the Sticky Gridworld.
We report the negative log-likelihood of a sample trajectory
set, generated from the optimal policy for the ground-truth
reward, for each of the computed policies. We report these
log-likelihoods in Table II. Our algorithm achieves near-
optimal performance in both novel environments, attaining
the best transferability performance among all methods. It is
worth mentioning that the Gaussian random walk structure
of the weights is embedded in the learning algorithm of [19],
which we do not assume in our approach. Also, finite-horizon
MaxEnt IRL baseline is given the true feature function. Fi-
nally, both [19] and [16] produce state-only reward functions,
which are usually more suited for transferability tasks [15].

VII. CONCLUSION

In this work, we addressed the challenge of reward identifi-
cation in finite-horizon, time-varying settings by introducing
a unifying framework that incorporates sparsity and rank
priors. Our approach efficiently recovers minimally switching

Policy Blocked Gridworld Sticky Gridworld

π∗
1 −1.2851 −1.3021

π̂∗
1 −1.2850 −1.3019

π∗
true −1.2495 −1.2223

π∗
r (Ours) −1.2516 −1.2438

π∗
ash [19] −1.3546 −1.2778

π∗
s [16] −1.3236 −1.3279

TABLE II: Performance of different policies in the transferability
experiments. π∗

1 is the optimal policy of rtrue in the Open Grid-
World, and π̂∗

1 is its sample estimate. In the novel environments,
π∗
true is the optimal policy of rtrue, π∗

r is the optimal policy of the
learned reward from (P2-approx), π∗

ash is the optimal policy using
[19], and π∗

s is the optimal policy using [16].

rewards through a greedy interval partitioning algorithm
and leverages low-rank matrix approximations to identify
structured feature-based rewards. Empirical results on several
gridworld environments demonstrate robustness to policy
estimation noise and superior transferability compared to
existing methods.

REFERENCES

[1] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement
learning,” in International Conference on Machine Learning, vol. 1,
2000, p. 2.

[2] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “Information
gathering actions over human internal state,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2016, pp. 66–73.

[3] D. Sadigh, A. D. Dragan, S. S. Sastry, and S. A. Seshia, “Active
preference-based learning of reward functions,” in Proceedings of
Robotics: Science and Systems (RSS), July 2017.

[4] E. Bıyık, D. P. Losey, M. Palan, N. C. Landolfi, G. Shevchuk, and
D. Sadigh, “Learning reward functions from diverse sources of human
feedback: Optimally integrating demonstrations and preferences,” The
International Journal of Robotics Research, vol. 41, no. 1, pp. 45–67,
2022.

[5] A. Y. Ng, D. Harada, and S. J. Russell, “Policy invariance under
reward transformations: Theory and application to reward shaping,” in
International Conference on Machine Learning, 1999, pp. 278–287.

[6] H. Cao, S. Cohen, and L. Szpruch, “Identifiability in inverse reinforce-
ment learning,” Advances in Neural Information Processing Systems,
vol. 34, pp. 12 362–12 373, 2021.

[7] K. Kim, S. Garg, K. Shiragur, and S. Ermon, “Reward identification
in inverse reinforcement learning,” in International Conference on
Machine Learning. PMLR, 2021, pp. 5496–5505.

[8] J. M. V. Skalse, M. Farrugia-Roberts, S. Russell, A. Abate, and
A. Gleave, “Invariance in policy optimisation and partial identifiability
in reward learning,” in International Conference on Machine Learning.
PMLR, 2023, pp. 32 033–32 058.

[9] A. M. Metelli, G. Ramponi, A. Concetti, and M. Restelli, “Provably
efficient learning of transferable rewards,” in International Conference
on Machine Learning. PMLR, 2021, pp. 7665–7676.

[10] A. M. Metelli, F. Lazzati, and M. Restelli, “Towards theoretical
understanding of inverse reinforcement learning,” in International
Conference on Machine Learning. PMLR, 2023, pp. 24 555–24 591.

[11] D. Lindner, A. Krause, and G. Ramponi, “Active exploration for
inverse reinforcement learning,” Advances in Neural Information Pro-
cessing Systems, vol. 35, pp. 5843–5853, 2022.

[12] A. M. Metelli, “Recent advancements in inverse reinforcement learn-
ing,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 38, no. 20, 2024, pp. 22 680–22 680.

[13] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in International Conference on Machine Learning,
2004, p. 1.

[14] J. M. Buchanan, Cost and choice: An inquiry in economic theory.
University of Chicago Press, 1978.

[15] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adver-
sarial inverse reinforcement learning,” in International Conference on
Learning Representations, 2018.

[16] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maxi-
mum entropy inverse reinforcement learning,” in AAAI Conference on
Artificial Intelligence, vol. 8, 2008, pp. 1433–1438.

[17] F. Lazzati and A. M. Metelli, “On the partial identifiability in reward
learning: Choosing the best reward,” arXiv preprint arXiv:2501.06376,
2025.

[18] M. L. Shehab, A. Aspeel, N. Arechiga, A. Best, and N. Ozay,
“Learning true objectives: Linear algebraic characterizations of iden-
tifiability in inverse reinforcement learning,” in 6th Annual Learning
for Dynamics & Control Conference. PMLR, 2024, pp. 1266–1277.

[19] Z. Ashwood, A. Jha, and J. W. Pillow, “Dynamic inverse reinforcement
learning for characterizing animal behavior,” Advances in Neural
Information Processing Systems, vol. 35, pp. 29 663–29 676, 2022.

[20] Q. P. Nguyen, B. K. H. Low, and P. Jaillet, “Inverse reinforcement
learning with locally consistent reward functions,” Advances in Neural
Information Processing Systems, vol. 28, 2015.

[21] A. Likmeta, A. M. Metelli, G. Ramponi, A. Tirinzoni, M. Giuliani,
and M. Restelli, “Dealing with multiple experts and non-stationarity in
inverse reinforcement learning: an application to real-life problems,”
Machine Learning, vol. 110, pp. 2541–2576, 2021.

[22] R. Rickenbach, E. Arcari, and M. Zeilinger, “Time dependent inverse
optimal control using trigonometric basis functions,” in Learning for
Dynamics and Control Conference. PMLR, 2023, pp. 1193–1204.

[23] K. Westermann, J. F.-S. Lin, and D. Kulić, “Inverse optimal control
with time-varying objectives: application to human jumping movement
analysis,” Scientific reports, vol. 10, no. 1, p. 11174, 2020.

[24] M. Geist, B. Scherrer, and O. Pietquin, “A theory of regularized
markov decision processes,” in International Conference on Machine
Learning, 2019, pp. 2160–2169.

[25] B. D. Ziebart, Modeling purposeful adaptive behavior with the princi-
ple of maximum causal entropy. Carnegie Mellon University, 2010.

[26] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement
learning with deep energy-based policies,” in International Conference
on Machine Learning. PMLR, 2017, pp. 1352–1361.

[27] A. Gleave and S. Toyer, “A primer on maximum causal entropy inverse
reinforcement learning,” arXiv preprint arXiv:2203.11409, 2022.

[28] F. Memarian, Z. Xu, B. Wu, M. Wen, and U. Topcu, “Active task-
inference-guided deep inverse reinforcement learning,” in IEEE Con-
ference on Decision and Control. IEEE, 2020, pp. 1932–1938.

[29] M. Bloem and N. Bambos, “Infinite time horizon maximum causal
entropy inverse reinforcement learning,” in IEEE Conference on De-
cision and Control. IEEE, 2014, pp. 4911–4916.

[30] E. Amaldi and V. Kann, “On the approximability of minimizing
nonzero variables or unsatisfied relations in linear systems,” Theo-
retical Computer Science, vol. 209, no. 1-2, pp. 237–260, 1998.

[31] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy approxi-
mations,” Constructive Approximation, vol. 13, pp. 57–98, 1997.

[32] N. Ozay, M. Sznaier, C. M. Lagoa, and O. I. Camps, “A sparsification
approach to set membership identification of switched affine systems,”
IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 634–648,
2011.

[33] H. Konno, “A cutting plane algorithm for solving bilinear programs,”
Mathematical Programming, vol. 11, no. 1, pp. 14–27, 1976.

[34] F. A. Al-Khayyal and J. E. Falk, “Jointly constrained biconvex
programming,” Mathematics of Operations Research, vol. 8, no. 2,
pp. 273–286, 1983.

[35] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM
Review, vol. 38, no. 1, pp. 49–95, 1996.

[36] E. Beran and K. Grigoriadis, “A combined alternating projections and
semidefinite programming algorithm for low-order control design,”
IFAC Proceedings Volumes, vol. 29, no. 1, pp. 1068–1073, 1996.

[37] R. E. Skelton, T. Iwasaki, and K. Grigoriadis, A unified algebraic
approach to linear control design. Taylor & Francis, 2013.

[38] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization,”
SIAM Review, vol. 52, no. 3, pp. 471–501, 2010.

[39] K. Mohan and M. Fazel, “Reweighted nuclear norm minimization with
application to system identification,” in American Control Conference.
IEEE, 2010, pp. 2953–2959.

[40] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classifi-
cation, vol. 2, pp. 193–218, 1985.

