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ABSTRACT

Lexicographic multi-objective problems, which impose a lexicographic importance order
over the objectives, arise in many real-life scenarios. Existing Reinforcement Learning
work directly addressing lexicographic tasks has been scarce. The few proposed ap-
proaches were all noted to be heuristics without theoretical guarantees as the Bellman
equation is not applicable to them. Additionally, the practical applicability of these prior
approaches also suffers from various issues such as not being able to reach the goal state.
While some of these issues have been known before, in this work we investigate fur-
ther shortcomings, and propose fixes for improving practical performance in many cases.
We also present a policy optimization approach using our Lexicographic Projection Opti-
mization (LPO) algorithm that has the potential to address these theoretical and practical
concerns. Finally, we demonstrate our proposed algorithms on benchmark problems.

1 INTRODUCTION

The need for multi-objective reinforcement learning (MORL) arises in many real-life scenarios and
the setting cannot be reduced to single-objective reinforcement learning tasks in general Vamplew
et al. (2022). However, solving multiple objectives requires overcoming certain inherent difficulties.
In order to compare candidate solutions, we need to incorporate given user preferences with respect
to the different objectives. This can lead to Pareto optimal or non-inferior solutions forming a set
of solutions where no solution is better than another in terms of all objectives. Various methods of
specifying user preferences have been proposed and evaluated along three main fronts: (a) expres-
sive power, (b) ease of writing, and (c) the availability of methods for solving problems with such
preferences. For example, writing preference specifications that result in a partial order of solutions
instead of a total order makes the specification easier for the user but may not be enough to describe a
unique preference. Three main motivating scenarios differing on when the user preference becomes
available or used have been studied in the literature. (1) User preference is known beforehand and
is incorporated into the problem a priori. (2) User preference is used a posteriori, i.e., firstly a set
of representative Pareto optimal solutions is generated, and the user preference is specified over it.
(3) An interactive setting where the user preference is specified gradually during the search and the
search is guided accordingly.

The most common specification method for the a priori scenario is linear scalarization which re-
quires the designer to assign weights to the objectives and take a weighted sum of the objectives,
thus making solutions comparable Feinberg & Shwartz (1994). The main benefit of this technique
is that it allows the use of many standard off the shelf algorithms as it preserves the additivity of
the reward functions. However, expressing user preference with this technique requires significant
domain knowledge and preliminary work in most scenarios Li & Czarnecki (2019). While it can be
the preferred method when the objectives can be expressed in comparable quantities, e.g. when all
objectives have a monetary value, this is not the case most of the time. Usually, the objectives are
expressed in incomparable quantities like money, time, and carbon emissions. Additionally, a com-
posite utility combining the various objectives, and an approximation of that with linear scalarization
limits us to a subset of the Pareto optimal set.

To address these drawbacks of linear scalarization, several other approaches have been proposed and
studied. Nonlinear scalarization methods like Chebyshev Perny & Weng (2010) are more expressive
and can capture all of the solutions in the Pareto optimal set, however, they do not address the
user-friendliness requirement. In this paper, we will focus on an alternative specification method
that overcomes both limitations of linear scalarization, named Thresholded Lexicographic Ordering
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(TLO) Gábor et al. (1998) Li & Czarnecki (2019). In lexicographic ordering, the user determines
an importance order for the objectives, and the less important objectives are only considered if
two solutions respect the ordering of the more important objectives. The thresholding part of the
technique allows a more generalized definition for being the same w.r.t. an objective. The user
provides a threshold for each objective except the last, and the objective values are clipped at the
corresponding thresholds. This allows the user to specify values beyond which they are indifferent
to the optimization of an objective. There is no threshold for the last objective as it is considered an
unconstrained open-ended objective.

Despite the strengths of this specification method, the need for a specialized algorithm to use it
in reinforcement learning (RL) has prevented it from being a common technique. The Thresholded
Lexicographic Q-Learning (TLQ) algorithm was proposed as such an algorithm and has been studied
and used in several papers Li & Czarnecki (2019) Hayes et al. (2020). While it has been noted that
this algorithm does not enjoy the convergence guarantees of its origin algorithm (Q-Learning), we
found that its practical use is limited to an extent that has not been discussed in the literature before.
In this work, we investigate such issues of TLQ further. We also present a Policy Gradient algorithm
as a general solution that has the potential to address many of the shortcomings of TLQ algorithms.

Our Contributions. Our main contributions in this work are as follows: (1) We demonstrate the
shortcomings of existing TLQ variants on a common control scenario where the primary objective
is reaching a goal state and the other secondary objectives evaluate trajectories taken to the goal.
We formulate a taxonomy of the problem space in order to give insights into TLQ’s performance
in different settings. (2) We propose a lexicographic projection algorithm which computes a lexi-
cographically optimal direction that optimizes the current unsatisfied highest importance objective
while preserving the values of more important objectives using projections onto hypercones of their
gradients. Our algorithm allows adjusting how conservative the new direction is w.r.t. preserved
objectives and can be combined with first-order optimization algorithms like Gradient Descent or
Adam. We also validate this algorithm on a simple optimization problem from the literature. (3) We
explain how this algorithm can be applied to policy-gradient algorithms to solve Lexicographic
Markov Decision Processes (LMDPs) and experimentally demonstrate the performance of a REIN-
FORCE adaptation on the cases that were problematic for TLQ.

Additionally, in Appendices C and D, we give further insights into TLQ by giving more details
about how different TLQ variants fail in problematic scenarios. Then, we present both some of our
failed efforts and the promising directions we identified in order to guide future research.

2 RELATED WORK

Gábor et al. (1998) was one of the first papers that investigate the use of RL in multi-objective tasks
with preference ordering. It introduces TLQ as an RL algorithm to solve such problems. Vamplew
et al. (2011) showed that TLQ significantly outperforms Linear Scalarization (LS) when the Pareto
front is globally concave or when most of the solutions lie on the concave parts. However, LS
performs better when the rewards are not restricted to terminal states, because TLQ cannot account
for the already received rewards. Later, Roijers et al. (2013) generalized this analysis by comparing
more approaches using a unifying framework. To our knowledge, Vamplew et al. (2011) is the only
previous work that explicitly discussed shortcomings of TLQ. However, we found that TLQ has
other significant issues that occur even outside of the problematic cases they analyze.

Wray et al. (2015) introduced Lexicographic MDP (LMDP) and the Lexicographic Value Iteration
(LVI) algorithm. LMDPs define the thresholds as slack variables which determine how worse than
the optimal value is still sufficient. While Wray et al. (2015) proved the convergence to desired
policy if slacks are chosen appropriately, such slacks are generally too tight to allow defining user
preferences. This is also observed in Pineda et al. (2015) which claimed that while ignoring these
slack bounds negates the theoretical guarantees, the resulting algorithm still can be useful in practice.

Li & Czarnecki (2019) investigated the use of Deep TLQ for urban driving. It showed that the
TLQ version proposed in Gábor et al. (1998) introduces additional bias which is especially prob-
lematic in function approximation settings like deep learning. Also, it depends on learning the true
Q function, which can not be guaranteed. To overcome these drawbacks, it used slacks instead of
the static thresholds and proposed a different update function. Hayes et al. (2020) used TLQ in a
multi-objective multi-agent setting and proposed a dynamic thresholding heuristic to deal with the
explosion of the number of thresholds to be set.
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However, we discovered that these works on using a Q-learning variant with thresholded ordering
perform very poorly in most cases due to non-Markovianity of the value function they try to learn.
It is possible to bypass this issue by using policy gradient approaches as they do not require learn-
ing an optimal value function. In order to handle conflicting gradients, some modifications to the
gradient descent algorithm are needed. Recent work on modified gradient descent algorithms came
mostly from Multi Task Learning literature, which could be considered a multiobjective optimiza-
tion problem Désidéri (2009) Sener & Koltun (2018) Lin et al. (2019) Mahapatra & Rajan (2020)
Parisi et al. (2014) Liu et al. (2021). While these papers use similar ideas with our work, their setting
is different than ours as they do not have any explicit importance order; hence, not applicable to our
setting. Uchibe & Doya (2008) has the most similar setting to ours in gradient-based algorithms.
It considers a set of constraints with an unconstrained objective. Then, the gradient of the uncon-
strained objective is projected onto the positive half-space of the active (violated) constraints and
adds a correction step to improve the active constraints. When no valid projection is found, the most
violated constraints are ignored until a valid projection exists. This is one of the main differences
with our setting: As we have an explicit importance-order of the objectives, it is not acceptable to
ignore a constraint without considering the importance order. Also, we project the gradients onto
hypercones instead of hyperplanes, which is a hypercone with π/2 vertex angle. Thus, our algorithm
allows varying degrees of conservative projections to prevent a decline in the constraints.

While there are many other recent works on Constrained Markov Decision Process (CMDPs) (Wachi
& Sui, 2020; Garcı́a et al., 2017; Junges et al., 2016), their approaches are not applicable as an
importance order over the constraints is not allowed. Recently, using RL with lexicographic ordering
began to attract attention from other communities as well. For example, Hahn et al. (2021) uses
formal methods to construct single objective MDPs when all of the objectives are ω-regular.

Finally, Skalse et al. (2022) was published in August 2022 and it proposes both value-based and
policy-based approaches. Their value-based approach is based on slacks like Li & Czarnecki (2019)
and they require using very small slack values. This protects their approach from the issues with
having relaxations by limiting their setting to strict lexicographic order. For policy-based methods,
they use Lagrangian relaxation and their setting is again a strict lexicographic ordering, i.e. it does
not allow treating values above a threshold equal.

3 BACKGROUND

Multiobjective Markov Decision Process (MOMDP). A MOMDP is a tuple ⟨S,A, T,R, γ⟩ where

• S is the finite set of states with initial state sinit ∈ S and a set of terminal states SF ,
• A is a finite set of actions,
• P : S × A × S → [0, 1] is the state transition function given by P (s, a, s′) = P(s′|s, a), the

probability of transitioning to state s′ given current state s and action a.
• R = [R1, . . . , RK ]T is a vector that specifies the reward of transitioning from state s to s′ upon

taking action a under K different reward functions Ri : S ×A× S → R for i ∈ {1, . . . ,K}.
• γ ∈ R is a discount factor.

In such a MOMDP, a finite trajectory ζ ∈ (S × A)∗ × S is a sequence ζ = s0a0s1a1 . . . aT−1sT
where si ∈ S, ai ∈ A and indices denote the time steps. The evolution of an MDP is governed
by repeated agent-environment interactions, where in each step, an agent first picks actions in a
state s according to some probabilistic distribution, and for each of these actions a the environment
generates next states according to P(s′|s, a). Each reward function Ri corresponds to an objective
oi, the discounted rewards sum that the agent tries to maximize. Control over a MOMDP requires
finding an optimal policy function π∗ : S×A→ [0, 1] which assigns probability Pπ∗(a|s) to actions
a ∈ A. In this paper, we use the episodic case of MDP where the agent-environment interaction
consists of sequences that start in sinit and terminates when a state in SF is visited. The length of
the episode is finite but not a fixed number. In MDP literature, this is known as ”indefinite-horizon”
MDP. The episodic case can be ensured by restricting ourselves to suitable policies which have a
non-zero probability for all action in all states.

We define the quality of a policy π with respect to an objective oi ∈ {1, . . . ,K} by the value
function V π

i : S → R given by V π
i (s) = Eπ[

∑T
t=0 γ

tRi(st, at, st+1)|s0 = s]. Intuitively, vπi (s)
is the expected return from following policy π starting from state s w.r.t. objective oi. Overall, the
quality of a policy π is given by the vector valued function V π : S → RK which is defined as
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V π(s) = [V π
1 (s), . . . , V π

K(s)]T . As V is vector-valued, without a preference for comparing V π
i

values across different i, we only have a partial order over the range of V , leading to Pareto front
of equally good quality vectors. Further preference specification is needed to order the points on
the Pareto front. A Lexicographic MDP (LMDP) is a class of MOMDP which provides such an
ordering. It adds another component to MOMDP definition:

• τ = ⟨τ1, . . . , τK−1⟩ ∈ RK−1 is a tuple of threshold values where τi indicates the minimum
acceptable value for objective i. The last objective does not require a threshold; hence, there
are only K − 1 values. Then, τ can be used to compare value vectors u,v ∈ RK by defining
the thresholded lexicographic comparison >τ as u >τ v iff there exists i ≤ K such that:

– ∀j < i we have uj ≥ min(vj, τj); and
* if i < K then min(ui, τi) > min(vi, τi),
* otherwise if i = K then ui > vi.

Intuitively, we compare u and v starting from the most important objective (j = 1); the less
important objectives are considered only if the order of higher priority objectives is respected.
The relation ≥τ is defined as >τ OR =.

Value-function Algorithms for Optimal Policies. An optimal policy π∗ is a policy that is better
than or equal to any other policy π ∈ Π, i.e., if V π∗

(s) ≥τ V π(s) ∀s ∈ S for all other policies π
(Gábor et al., 1998). There are two approaches to finding an optimal policy in RL: Value-function
algorithms and Policy Gradient algorithms. Value function based methods estimate the optimal
action-value function Q∗ and construct π∗ using it. The action-value function under π, Qπ : S ×
A → RK , is defined as: Qπ(s, a)

∆
= Eπ[

∑T
t=0 γ

tR(st, at, st+1)|s0 = s, a0 = a] The optimal
action-value function, Q⋆, is defined as: Q⋆(s, a) = maxπ∈Π Qπ(s, a). Then, π∗ can be obtained
as: π∗(s, a) = 1 if a = argmaxa′∈A Q⋆(s, a′), and 0 otherwise. In single objective MDPs, the
Bellman Optimality Equation as seen in Eq. 1 is used to learn Q⋆ as it gives an update rule that
converges to Q⋆ when applied iteratively.

Q⋆(s, a) = E
s′∼P

[(R(s, a, s′) + γmax
a′∈A

Q⋆(s′, a′))] (1)

Q-learning Watkins & Dayan (1992) is a very popular algorithm that takes this approach. TLQ tries
to extend Q-learning for LMPDs; however, Bellman Optimality Equation does not hold in LMDPs.
Hence, this approach lacks the theoretical guarantees enjoyed by Q-learning.

Policy Gradient Algorithms for π∗. Policy gradient algorithms in RL try to learn the policy directly
instead of inferring it from the value functions. These methods estimate the gradient of the optimality
measure w.r.t. policy and update the candidate policy using this potentially imperfect information.
We denote the policy parameterized by a vector of variables, θ as πθ. The performance of the policy
πθ, denoted J(θ), can be defined as the the expected return from following πθ starting from sinit,
i.e. J(θ)

∆
= V πθ (sinit). Once the gradient of the optimality measure w.r.t. the parameters of the

policy function is estimated, we can use first-order optimization techniques like Gradient Ascent
to maximize the optimality measure. While all based on the similar theoretical results, a myriad
of policy gradient algorithms have been proposed in the literature Sutton et al. (1999) Konda &
Tsitsiklis (1999) Schulman et al. (2017) Lillicrap et al. (2015) Haarnoja et al. (2018).

4 TLQ: VALUE FUNCTION BASED APPROACHES FOR TLO

Previous efforts to find solutions to the LMDPs have been focused on value-function methods. Apart
from Wray et al. (2015), which takes a dynamic programming approach, these have been variants
of Thresholded Lexicographic Q-Learning (TLQ), an LMDP adaptation of Q-learning Gábor et al.
(1998) Li & Czarnecki (2019). While these methods have been used and investigated in numerous
papers, the extent of their weaknesses has not been discussed explicitly.

In order to adapt Q-learning to work with LMDPs, one cannot simply use the update rule in Q-
learning for each objective and learn the optimal value function of each objective completely inde-
pendent of the others. Such an approach would result in the actions being suboptimal for some of
the objectives. Based on this observation, two variants of TLQ Gábor et al. (1998)Li & Czarnecki
(2019) have been proposed, which differ in how they take the other objectives into account. We
analyze these variants by dividing their approaches into two components: (1) value functions and
update rules; and (2) acceptable policies for action selection. However, it should be noted that these
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components are inherently intertwined due to the nature of the problem — the value functions and
acceptable policies are defined recursively where each of them uses the other’s last level of recur-
sion. Due to these inherent circular referencing, the components will not be completely independent
and some combinations of introduced techniques may not work.

Value Functions and Update Rules. The starting point of learning the action-value function for
both variants is Q⋆ = ⟨Q⋆

1, . . . , Q
⋆
K⟩ where each Q⋆

i : S × A → R is defined as in Section 3 only
with the change that the maximization is not done over the set of all policies Π but over a subset of it
Πi−1 ⊆ Π which will be described below. Gábor et al. (1998) proposes learning Q̂⋆ : S×A→ RK

where each component of Q̂⋆ denoted by Q̂⋆
i is defined as: Q̂⋆

i (s, a)
∆
= min(τi, Q

⋆
i (s, a)) In other

words, it is the rectified version of Q⋆
i . It is proposed to be learned by updating Q̂⋆

i (s, a) with the
following value iteration which is adapted from Eq. 1

min
(
τi,

∑
s′

P (s, a, s′)(Ri(s, a, s
′) + γ max

π∈Πi−1

Q̂⋆
i (s

′, π (s′))
)

(2)

Notice that similar to the definition of Q⋆
i , the main change during the adaptation is limiting the

domain of max operator to Πi−1 from Π. On the other hand, Li & Czarnecki (2019) proposes that
we estimate Q⋆ instead and use it when the actions are being picked. This Q⋆ uses the same update
rule as Eq. 1 with only change being maximization over Πi−1.

Acceptable Policies Πi and Action Selection. The second important part of TLQ is the definition
of ”Acceptable Policies”, Πi, which is likely to be different for each objective. The policies in Πi

are ones that satisfy the requirements of the first i objectives. Values of the acceptable policies in
a given state are the acceptable actions in that state. Hence, these sets will be used as the domain
of both max operator in the update rules and argmax operator in ActionSelection function.
The pseudocode of this function can be seen in Algorithm 1. Note that the structure of this function
is the same for both variants of TLQ and different instantiations of the function differ in how the
AcceptableActs subroutine is implemented. AcceptableActs takes the current state s, the
Q-function to be used, and the actions acceptable to the objectives up to the last one and outputs the
actions acceptable to the objectives up to and including the current one. Below, we will describe
how Πi has been defined in the literature, see Appendix B for the formal definitions.

Algorithm 1 ActionSelection
Function ActionSelection(s,Q, ϵ|A):

r ∼ U(0, 1)
if r < ϵ then

a is picked randomly from A
else

A0 ← A
for o = 1,K do

if |Ao−1| > 1 and o < K then
Ao ←
AcceptableActs(s,Q,Ao−1)

else
a← argmaxa′∈Ao−1

Qi(s, a
′)

break
end

return a

Absolute Thresholding: Gábor et al. (1998) pro-
poses this approach where the actions with values
higher than a real number are considered acceptable.
Hence, Πi is the subset of Πi−1 for which Q-values
are higher than some τ .
Absolute Slacking: This is the approach taken by
Li & Czarnecki (2019) where a slack from the opti-
mal value in that state is determined and each action
within that slack is considered acceptable.

4.1 SHORTCOMINGS OF PRIOR TLQ APPROACHES

The shortcomings of TLQ depend on the type of
task. We introduce a taxonomy to facilitate the dis-
cussion.

Constrained/Unconstrained Objective: Constrained
objectives are bounded in quality by their thresh-
old values above which all values are considered the

same. Unconstrained objectives do not have a such threshold value. In an LMDP setting, all objec-
tives but the last one are constrained objectives.
Terminating Objective: An objective that either implicitly or explicitly pushes the agent to go to a
terminal state of the MDP. More formally, this means discounted cumulative reward for an episode
that does not terminate within the horizon is lower than an episode that terminates.
Reachability Objective: A reachability objective is represented by a non-zero reward in the terminal
states of the MDP and zero rewards elsewhere. We will call an objective that has non-zero rewards
in at least one non-terminal state a non-reachability objective.

This taxonomy also helps seeing the problematic cases and potential solutions. To summarize the
empirical demonstrations about the applicability of TLQ for different parts of the problem space:
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(I) TLQ successful case studies: Vamplew et al. (2011) shows an experiment where the constrained
objective is reachability, unconstrained objective is terminating, and TLQ works. Li & Czarnecki
(2019) shows this for a case study where the constrained objective is a non-terminating reachability
constraint. Note that these are just demonstrations of empirical performance for some case studies
that fall into these categories and the papers do not make claims about the general instances.

(II) TLQ does not work: Vamplew et al. (2011) shows that TLQ does not work when constrained ob-
jective is non-reachability. In this work, we show that TLQ also does not work when the constrained
objective is a terminating reachability objective but the unconstrained one is non-terminating.

Benchmark. We describe some scenarios that are common in control tasks yet TLQ fails to solve.
To illustrate different issues caused by TLQ, we need an adaptable multiobjective task. Also, limit-
ing ourselves to finite state and action spaces where the tabular version of TLQ can be used simplifies
the analysis. Our MAZE environment satisfies all of our requirements. Figure 1 shows an example.

__________
|__|G_|__| 2
|HH|HH|__| 1
|__|S_|__| 0
0 1 2

Figure 1: A simple maze that
can be used to demonstrate
how TLQ fails to reach the
goal state.

In all MAZE instantiations, each episode starts in S and G is the ter-
minal state. There are also two types of bad tiles. The tiles marked
with HHs are high penalty whereas the ones with hhs show the
low penalty ones. In this work, we will use −5 as high penalty
and −4 as low penalty. But we consider the penalty amounts pa-
rameters in the design of a maze; so, they could change. There are
two high-level objectives: Reach G and avoid bad tiles. Ordering
of these objectives and exact definition of them results in different
tasks. We use these different tasks to cover different parts of the
problem space described in the taxonomy. The action space con-
sists of four actions: Up,Down,Left,Right. These actions move the
agent in the maze and any action which would cause the agent to

leave the grid will leave its position unchanged.

Problems with Reachability Constraint. A common scenario in control tasks is having a primary
objective to reach a goal state and a secondary objective that evaluates the path taken to there.
Formally, this is a scenario where the primary objective is a reachability objective. However, TLQ
either needs to ignore the secondary objective or fails to satisfy the primary objective in such cases.
All of the thresholding methods above fail to guarantee to reach the goal in this setting when used
threshold/slack values are uniform throughout state space. The maze in Figure 1 can be used to
observe this phenomenon. Assume that our primary objective is to reach G and we encode this
with a reward function that is 0 everywhere but G where it is R. And our secondary objective is to
avoid the bad tiles. A Pareto optimal policy in this maze could be indicated by the state trajectory
(1, 0)→ (2, 0)→ (2, 1)→ (2, 2)→ (1, 2). However, this is unattainable by TLQ.

Since the reward is given only in the goal state, Q̂⋆
1 can be equal to τ1 only for the state-action pairs

that lead to the goal state. All others will be discounted from these; hence, all are less than τ1. This
means the agent will always ignore the secondary when using absolute thresholding of Gábor et al.
(1998). If no discounting was used, all actions would have the value τ1, hence the agent would not
need to reach the goal state. We believe the reason why Vamplew et al. (2011) has not observed
this issue in their experiments with undiscounted (γ = 1) Deep Sea Treasure (DST) is due to their
objectives. The secondary objective of DST, minimizing the time steps before terminal state, is a
terminating objective which pushes the agent to actually reach a goal state.

In Appendix C.1, we show how Absolute Slacking also leads to contradicting requirements when
the trajectory described above is aimed. Moreover, in Appendix C.2, we present another case study
which shows all TLQ variants fail to find the optimal policies in some very standard scenarios where
the primary objective is a reachability objective. More generally, it highlights the shortcomings of
having a single threshold/slack value for all states which can manifest itself in other settings too.

5 POLICY GRADIENT APPROACH FOR TLO

In this section, we introduce our policy gradient approach that utilizes consecutive gradient projec-
tions to solve LMDPs. Policy gradient methods treat the performance of a policy, J(θ), as a function
of policy parameters that needs to be maximized and employ standard gradient ascent optimization
algorithms Ruder (2016). Following this modularity, we start with proposing a general optimization
algorithm, the Lexicographic Projection Algorithm (LPA), for multiobjective optimization (MOO)
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problems with thresholded lexicographic objectives. Then, we will show how single objective Policy
Gradient algorithms can be adapted to this optimization algorithm.

As gradients w.r.t. different objectives can be conflicting for MOO, various ways to combine them
have been proposed. Uchibe & Doya (2008) proposes projecting the gradients of the less important
objectives onto the positive halfspaces of the more important gradients. Such a projection vector
has the highest directional derivative w.r.t. less important objective among the directions with non-
negative derivative w.r.t. the important objectives. This is assumed to protect the current level for the
important objective while trying to improve the less important. However, non-negative derivative
actually does not guarantee to protect the current level as infinitely small step sizes are not used
in practice. For example, if a function is strictly concave, the change in a zero-derivative direction
will be always negative for any step size greater than 0. Therefore, we propose projecting onto
hypercones which allows more control over how safe the projection is. A hypercone is the set
of vectors that make at most π

2 − ∆ angle with the axis vector; a positive halfspace is a special
hypercone where ∆ = 0. Increasing ∆ brings the projection closer to the axis vector. A hypercone
C∆

a with axis a ∈ Rn and angle π
2 −∆ is defined as C∆

a ={
x ∈ Rn

∣∣∣∣∥x∥ = 0 ∨ aTx

∥a∥∥x∥
≥ cos (

π

2
−∆)

}
(3)

We can derive the equation for projection of g on C∆
a by firstly showing that g, a, and the projection

gp are planar using Karush-Kuhn-Tucker (KKT) conditions. Then, we can derive the formula by
using two-dimensional geometry (the details are in the appendix); giving us gp =

cos∆

sinϕ
sin (∆ + ϕ)

(
g + a

∥g∥
∥a∥

(sinϕ tan∆− cosϕ)

)
(4)

where ϕ is the angle between a and g. Moving forward, we assume a function
projectCone(g,a,∆) which returns gp according to this equation.

Lexicographic Projection Algorithm (LPA). A Thresholded Lexicographic MOO (TLMOO) prob-
lem with K objectives and n parameters can be formulated as maximizing a function F : A→ RK

where A ∈ Rn, and the ordering between two function values F (θ1), F (θ2) is according to ≥τ as
defined as in Section 3. Notice that when we have multiple objectives, the gradients will form a
K-tuple, G = (∇F1,∇F2, · · · ,∇FK), where ∇Fi is the gradient of ith component of F .

Since TLMOO problems impose a strict importance order on the objectives and it is not known how
many objectives can be satisfied simultaneously beforehand, a natural approach is to optimize the
objectives one-by-one until they reach the threshold values. However, once an objective is satisfied,
optimizing the next objective could have a detrimental effect on the satisfied objective. We can use
hypercone projection to avoid this. More formally, when optimizing Fi, we can project∇Fi onto the
intersection of {C∆

∇Fj
}j<i where ∆ is a hyperparameter representing how risk-averse our projection

is, and use the projection as the new direction. If such an intersection does not exist, it means that it
is not possible to improve Fi without taking a greater risk and we can terminate the algorithm.

Improving this approach with a heuristic that prevents overly conservative solutions leads to better
performance in certain cases. Conservative updates usually lead to further increases on the already
satisfied objectives instead of keeping them at the same level. This means most of the time, we have
enough buffer between the current value of the satisfied objectives and their thresholds to sacrifice
some of it for further gains in the currently optimized objective. Then, we can define a set of ”active
constraints” which is a subset of all satisfied objectives that we will not accept any sacrifice and
only consider these when projecting the gradient. The ”active constraints” can be defined loosely,
potentially allowing a hyperparameter that determines the minimum buffer zone needed to sacrifice
from an objective.

The FindDirection function in Algorithm 2 (our LPA algorithm) incorporates these ideas. This
function takes the tuple of all gradients M , the tuple of current function values F (θ), threshold
values τ , the conservativeness hyperparameter ∆, a boolean AC that determines whether ”active
constraints” heuristic will be used or not, and a buffer value b to be used alongside active constraints
heuristic as inputs. Then, it outputs the direction that should be followed at this step, which can
replace the gradient in a gradient ascent algorithm. For the optimization experiments, we will be
using the vanilla gradient ascent algorithm. Algorithm 2 finds the first objective that has not passed
its threshold and iteratively projects its gradient onto hypercones of all previous objectives. If such

7
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Algorithm 2 Lexicographic Constrained Ascent Direction
Function FindDirection(M,F (θ), τ,∆, AC, b):

Initialize action-value function Q with random weights
for o = 1,K do

if o = K − 1 or Fo(θ) < τo then
Initialize direction u with initial state Mo

for j = 1, o do
if not ((AC and Fj(θ) > τj + b) or ∠(u,Mj) <

π
2
−∆) then

u← projectCone(u,Mj ,∆)
end
for j = 1, o+ 1 do

if not ((j ̸= K − 1 and AC and Fj(θ) > τj + b) or ∠(u,Mj) <
π
2
−∆) then

return None
end
return u

end

a projection exists, it returns the projection as the ”Lexicographic Constrained Ascent” direction.
Otherwise, it returns null. In our experiments, we will set b = 0. In general, b can be set to any
non-negative value and higher values of b would result in a more conservative algorithm which does
not sacrifice from an objective unless it is well above the threshold.

Experiment. As a benchmark for the Lexicographic Projection Algorithm, we used F1(x, y) =
−4x2 + −y2 + xy and F2(x, y) = −(x − 1)2 − (y − 0.5)2 which are taken from Zerbinati et al.
(2011). We modified F2 slightly for better visualization and multiplied both functions with −1 to
convert this to a maximization problem. We set the threshold for F1 to −0.5. The behavior of
our cone algorithm without using active constraints heuristic on this problem with τ = (−0.5) and
∆ = π

90 can be seen in Figure 2. Further results with AC heuristic can be found in Appendix F.4.
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Figure 2: The changes in the function values. No-
tice that F2, in orange, is completely ignored un-
til the threshold for F1 is reached. Then, the al-
gorithm optimizes F2 while respecting the passed
threshold of F1.

Using Lexicographic Projection Algorithm
in RL. We show how LPA can be combined
with policy gradient algorithms. We use REIN-
FORCESutton et al. (1999) as the base policy
gradient algorithm because its simplicity mini-
mizes conceptual overhead.

We can adapt REINFORCE to work in LMDPs
by repeating the gradient computation for each
objective independently and computing a new
direction using FindDirection function.
Then, this new direction can be passed to the
optimizer. Algorithm 5 in the appendix shows
the pseudocode for this algorithm.

Note that our algorithm is compatible with most
policy gradient algorithms. Uchibe & Doya
(2008) shows how a similar idea is applied to
actor-critic family of policy gradient algorithms
which reduces the variance in the gradient esti-
mation by using a critic network. We believe
that more stable policy gradient algorithms like

actor-critic methods could further improve the performance of lexicographic projection approach as
our algorithm might be sensitive to noise in gradient estimation.

Experiments. We evaluate the performance of the Lexicographic REINFORCE algorithm on two
Maze problems. In both experiments, we use a two layer neural network (LeCun et al., 2015) for
policy function. Details of the policy function can be found in Appendix G.3.

Reachability Experiment. As the first experiment, we consider the case where the primary objec-
tive is a reachability objective and the secondary objective is non-terminating, which was the setting
that we found that TLQ fails to reach the goal state in Section 4.1. Our experiments show that Lexi-
cographic REINFORCE can successfully solve this problem. Details of this experiment and results
can be found in Appendix G.3.2.
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_____________
|__|G_|__|__| 4
|__|hh|hh|hh| 3
|__|__|__|__| 2
|HH|HH|HH|__| 1
|S_|__|__|__| 0
0 1 2 3

Figure 3: The Maze for the
non-reachability experiment.

Non-reachability Experiment. The primary objective is a non-
reachability objective, i.e. it takes non-zero values in some non-
terminal states. For this, we flip our objectives from the previous
setting and define our primary objective as minimizing the cost in-
curred from the bad tiles. HHs give −5 reward and hhs give −4
reward. A +1 reward is given in the terminal state to extend the pri-
mary objective to have rewards in both terminal and non-terminal
states. The secondary objective is to minimize the time taken to
the terminal state. We formalize this by defining our secondary re-
ward function as 0 in terminal state and −1 everywhere else. We
use the Maze in Figure 3 for this experiment. Note that this is the

setting that Vamplew et al. (2011) has found that TLQ fails. However, our experiments show that
Lexicographic REINFORCE can solve this setting too.
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Figure 4: Satisfaction frequency for a single successful seed for
the non-reachability experiment.

We found that out of the 10
seeds, 7 find policies that have
90% success over 100 episodes.
The change in satisfaction fre-
quencies of individual objec-
tives for a successful seed can be
seen in Figure 4. Notice that the
primary objective initially starts
very low and quickly increases
while the secondary objective
does the opposite. This hap-
pens while the algorithm mostly
optimizes the primary objective.
Once the primary objective is
learned, the algorithm starts im-
proving the secondary objective.

These experiments illustrate the
usefulness of projection based
policy gradient algorithm for
different tasks. We believe that
these results can be generalized

to more complex tasks when our algorithm is combined with more stable and sophisticated policy
gradient algorithms.

6 CONCLUSION

In this work, we considered the problem of solving LMDPs using model-free RL. While previous
efforts on this problem have been focused on value-function based approaches, the applicability of
these approaches over different problem settings and investigation of the extent of their shortcomings
have been limited. Our first contribution was providing further insights into the inherent difficulties
of developing value function based solutions to LMDPs. Towards this end, we both illustrated
failure scenarios for the existing methods, and also presented (in Appendices C and D) potential new
value-function based approaches. These approaches include both our failed attempts and promising
directions, we believe both will be helpful for future research.

Our second focus in this work was developing and presenting a policy-gradient based approach for
LMDPs. Policy gradient algorithms have not been studied in MDPs with thresholded lexicographic
objectives before even though they are more suitable for this setting as they bypass many inherent
issues with value functions, such as non-convergence due to non-greedy policies w.r.t. value func-
tions, and the need for different threshold values across the state space. For this, we developed a
general thresholded lexicographic multi-objective optimization procedure based on gradient hyper-
cone projections. Then, we showed how policy gradient algorithms can be adapted to work with
LMDPs using our procedure, and demonstrated the performance of our REINFORCE adaptation.
While our results are promising for the REINFORCE adaptation, future research could be further
empirical studies with more stable policy-gradient algorithm adaptations, and over more complex
tasks.
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REPRODUCIBILITY STATEMENT

In this work, we list all the hyperparameters that we used in the experiments in Section 5 and
Appendix G.3. We also share the source code for Section 5 in the supplementary material and we
will make the rest of the source code public for the camera-ready version. Moreover, we provide the
derivations of the projection formula we use for policy gradient approach, in Appendix E.
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A TECHNICAL APPENDIX ORGANIZATION

In this section, we will give an overview of the Appendix.

Technical Appendix for Section 4: In Appendix B, we share further mathematical details for the
different acceptable policy definitions. In Appendix C, we firstly describe how Absolute Slacking
and Relative Slacking suffer from the failure to reach the goal. Then, we present a different issue
that was not covered in the main paper: failure to sacrifice at both ends of the episode. After the
discussion of issues, we propose different approaches that can address these issues in Appendix D.

Technical Appendix for Section 5: We start by describing the derivation of the projection formula
used in the paper in Appendix E. Then, in Appendix F, we show why cone projection is useful
and share the rest of the experiments for the LPA algorithm on the simple optimization benchmark
used in the main paper too. Finally, we share further results from the experiments with the adapted
REINFORCE algorithm in Appendix G.

Within this technical appendix, we would like to highlight the following sections.

Appendix C continues our discussion in Section 4.1 and demonstrates how existing TLQ variants
fail in the given scenarios. Appendix D.2 presents a TLQ fix that addresses some shortcomings of
TLQ for two objectives. Appendix D.3.3 formulates how the well-known state augmentation idea
can be used to solve LMDPs and proposes this as a new research direction.

For the policy gradient part of our work, Appendix F.3 illustrates why hypercone projection is needed
instead of halfspace projections for lexicographic optimization. Then, Appendix G.2 shows the
pseudocode of our REINFORCE adaptation. Finally, Appendices F.4 and G.3 present rest of the
experiments that we could not fit in Section 5.

B FURTHER DETAILS ON ACCEPTABLE POLICIES

In this section, we will give the mathematical definitions of different thresholding methods. Also,
we will describe Relative Slacking, an alternative thresholding method that does not exist in the
literature. We include it for the sake of completeness.

1. Absolute Thresholding: This is the approach proposed by Gábor et al. (1998) where the
actions with values higher than a real number are considered acceptable. Formally,

Πi ≜ {πi ∈ Πi−1 | Q̂⋆
i (s, πi(s)) = max

a∈{πi−1(s)|πi−1∈Πi−1}
Q̂⋆

i (s, a),∀s ∈ S} (5)

2. Absolute Slacking: This is the approach taken by Li & Czarnecki (2019) and Skalse et al.
(2022) where a slack from the optimal value in that state is determined and each action within
that slack is considered acceptable.

Πi ≜ {πi ∈ Πi−1 | Q⋆
i (s, πi(s)) ≥ max

a∈{πi−1(s)|πi−1∈Πi−1}
Q⋆

i (s, a)− δi,∀s ∈ S} (6)

Notice that this thresholding scheme is not directly compatible with our definition of LMDPs
in Section 3. While they are both used to simply introduce some relaxation in policy selection
and it does not affect our general analysis, see Wray et al. (2015) and Pineda et al. (2015) for a
definition based on slacks.

3. Relative Slacking: In this approach, slacks are defined as ratios η ∈ (0, 1] rather than absolute
values. Then, any action with value greater than (1− η) times the optimal value is considered
acceptable. Formally,

Πi ≜ {πi ∈ Πi−1 | Q⋆
i (s, πi(s)) ≥ (1− η) max

a∈{πi−1(s)|πi−1∈Πi−1}
Q⋆

i (s, a),∀s ∈ S} (7)

While has not been proposed in any previous work, we included this for the sake of complete-
ness. Notice that ”Relative Thresholding” would be essentially the same technique, only with
different parameters.

C ISSUES WITH TLQ

In this section, we will elaborate more on the different issues with TLQ.
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C.1 FAILING TO REACH THE GOAL

In this section, we will explain how Relative Slacking and Absolute Slacking fail to reach the goal,
an issue we discussed in Section 4 for Absolute Thresholding. We will again use Figure 1.

Relative Slacking determines the maximum detour. If a non-optimal action delays reaching the
goal for k steps, this can be allowed only by defining η > γk. However, this detour can be taken
repeatedly, preventing actually reaching the goal.

Seeing how Absolute Slacking fails to overcome this problem is a little trickier. It requires a closer
inspection of action-values. Since we want that the agent to go left in (2, 2), the following should
be true:

Q⋆
1((2, 2), Right) < Q⋆

1((2, 2), Left)− δ1
=⇒ γR < R− δ1
=⇒ δ1 < R(1− γ)

However, allowing the agent to pick Right, instead of Up in (1, 0) requires:

Q⋆
1((1, 0), Right) ≥ Q⋆

1((2, 2), Up)− δ1

=⇒ γ3R ≥ γR− δ1

=⇒ δ1 ≥ Rγ(1− γ2)

Combining these two requirements implies that:

R(1− γ) > Rγ(1− γ2)

=⇒ 1 > γ(1 + γ)

=⇒ 0 > γ2 + γ − 1 Solving the quadratic equation
=⇒ 0.62 > γ

This shows that to reach the desired policy, not only δ but γ needs to be adjusted too. However,
the γ parameter is assumed to be an environment constant and traditionally set to values close to
1. Moreover, there is no real way to find the correct γ value apart from computing the action-value
function, the very thing we are trying to compute.

Also, a similar analysis shows that small tricks like replacing the primary reward function with

R′
1(s, a, s

′) =

{
0, if s′ = G

−1, otherise
(8)

with or without discounting does not solve this problem.

C.2 FAILURE TO SACRIFICE EARLY AND LATE

In this section, we will discuss an issue that was not discussed in the main paper: the failure to
sacrifice in the early and late parts of the episode. This issue still occurs even if ”failure to reach the
goal” issue is avoided because the secondary objective happened to be a terminating one.

Consider the maze shown in Figure 5. There are bad tiles in four rows and avoiding any of the rows
of bad tiles takes two steps. For example, compare the following two paths:

1. (1, 0)→ (1, 1)→ (1, 2)

2. (1, 0)→ (2, 0)→ (2, 1)→ (2, 2)→ (1, 2)

Path 2 avoids the bad tiles but it takes 4 steps to get to (1, 2) from (1, 0) compared to only 2 steps
of Path 1. Since avoiding any tiles costs the same number of extra steps, a natural policy in this
maze would be avoiding HH tiles and ignoring hh tiles. However, this is not possible with either
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MAZE
__________
|__|G_|__| 10
|HH|HH|__| 9
|__|__|__| 8
|__|hh|hh| 7
|__|__|__| 6
__|__|__ 5

|__|__|__| 4
|__|hh|hh| 3
|__|__|__| 2
|HH|HH|__| 1
|__|S_|__| 0
0 1 2

Figure 5: An example MAZE which can be used to demonstrate the issues with uniform threshold-
ing for TLQ.

thresholding method. Now, we will discuss how each thresholding method fails this achieving this
Pareto optimal policy.

The action-values show the reward in G discounted by the length of the shortest path to G from the
cell this state-action pair leads to. For example, Q((1, 8), Right) = Rγ3 as it takes 3 steps to get to
G from (2, 8). Hence, the action-values increase as the agent gets closer to the goal. Assume that
the agent is in (1, 0), the action that we need to take is Right, meaning τ1 should be set smaller than
or equal to γ11R in Absolute Thresholding. However, since the action values will be larger than this
in the states closer to G, it will mean that the primary objective will be ignored for the rest of the
episode. Hence, the agent will avoid h tiles too and the desired policy is unattainable.

Similarly, since Relative Thresholding effectively limits the length of detours and detours for avoid-
ing hs are of the same length as the ones for Hs, this cannot give a policy that only goes through
hs.

Absolute Slacking will cause this problem in the reverse, meaning the late episode detours requires
detours during the whole episode. Assume the agent is in cell (1, 8), then we need

Q⋆
1((1, 8), R) > Q⋆

1((1, 8), U)− δ1

=⇒ γ3R > γR− δ1

=⇒ δ1 > Rγ(1− γ2)

Then, if going left instead of up is not allowed in cell (1, 6):

Q⋆
1((1, 6), R) < Q⋆

1((1, 6), U)− δ1

=⇒ γ5R < γ3R− δ1

=⇒ δ1 < Rγ3(1− γ2)

Combining these two requirements gives Rγ3(1− γ2) > Rγ(1− γ2), which requires γ > 1 which
is false.

D VARIATIONS TO TLQ AND SOME ALTERNATIVES

In this section, we will try to address the problems with TLQ within the framework of value function
algorithms. We will start by briefly talking about two of our failed attempts (one completely failing
and another half-working) to develop working TLQ variants to show the breadth of the problems
and our work. Moreover, we believe these ideas are quite natural and can look promising; so, we
would like to share our experience to help people working on TLQ algorithms.
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Then, we will describe two of our working solutions. While these solutions are limited either in
terms of convergence or applicable domains, they provide either a good solution to a sizeable subset
of common tasks or give a good alternative to TLQ in the general case.

D.1 FAILED ATTEMPTS

In this section, we will give our not very successful attempts to improve the performance of TLQ.

D.1.1 TL-SARSA

Our first failed attempt was switching to an on-policy learning framework which could solve agents
getting stuck problem in Section 4.1. An important reason for this issue was agents’ optimistic
expectation that they would be following the optimal behavior after each action. So, we considered
an on-policy agent which actually uses its realistic behavior to learn could solve our issues.

So, we modified our update functions from Section 4 to mimic SARSA (Sutton & Barto (2018))
instead of Q-Learning. This would mean replacing the max operators with the actual action. For
example, the update function from Li & Czarnecki (2019)

Q⋆
i (s, a) =

∑
s′∈S

P (s, a, s′)(Ri(s, a, s
′) + γ max

π∈Πi−1

Q⋆
i (s

′, π(s′)) (9)

will become:
Q⋆

i (s, a) =
∑
s′∈S

P (s, a, s′)(Ri(s, a, s
′) + γQ⋆

i (s
′, a′) (10)

where a′ = π(s′).

However, this naive attempt failed due to some theoretical limitations of SARSA. Singh et al.
(2000) states that the convergence of SARSA is guaranteed under the condition that the policy
is greedy in limit. However, our policies are not necessarily greedy with respect to Q⋆ in limit.
Thresholding means that sometimes actions suboptimal w.r.t. Q⋆ are chosen. For example, if
Q⋆

1(s, a1) > Q⋆
1(s, a2) > τ1 and Q⋆

2(s, a2) > Q⋆
2(s, a1) for a state s in a two objective task,

the policy we want to learn is not greedy w.r.t. Q⋆
1. This manifested itself as constant oscillations in

the policy in our experiments.

D.1.2 CYCLIC ACTION SELECTION

Our second half-failed attempt was modifying the action selection mechanism to solve the phe-
nomenon described in Section C.1. It was based on the intuition that the reason for this issue was
unnecessary sacrifices in the primary objective that is not required by the secondary objective. For
example, if we consider the maze in Figure 1, going left or right in cell (2, 2) is the same w.r.t.
secondary objective, hence the agent should not sacrifice from the primary objective irrespective
of the thresholds/slacks. Using this intuition, we developed a cyclic action selection algorithm. In
Algorithm 3, we show a two objective version of it for simplicity. While it can be generalized to K
objectives, we do not believe it would be of interest considering its failure to completely address our
problems.

Algorithm 3 CyclicActionSelection
Function CyclicActionSelection(s,Q|A):

A0 ← A
A1 ← AcceptableActs(s,Q1, A0)
if |A1| ≤ 1 then // If there are not more than one option

1 return argmaxa∈A0
Q1(s, a)

2 end
3 A2 ← AcceptableActs(s,Q2, A1)

if |A2| ≤ 1 then
4 return argmaxa∈A1

Q2(s, a)
5 end
6 return argmaxa∈A2

Q1(s, a) ; // Max over A2 but wrt Q1
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As the pseudocode shows, the idea is to assign the unconstrained function a threshold/slack which
would be used to return the action selection right back to the primary objective but after applying this
new threshold. This can be seen from the Q-functions used with argmax and AcceptableActs
throughout the algorithm. It starts with using Q1, then uses Q2 if there are multiple acceptable
actions w.r.t. Q1. Finally, it uses Q1 again if there is more than one action acceptable w.r.t. Q2.
Notice that there is a AcceptableActs call using Q2 which is different than Algorithm 1. This
requires having a threshold/slacking for the unconstrained objective which is basically a hack. It can
be used with any thresholding function from Section B.

However, there are several problems with this approach. Firstly, having a threshold for the uncon-
strained objective removes one of the important supposed benefits of TLQ, namely its intuitiveness.
Especially the cyclic nature of this makes two different threshold values, one for each objective, to
be coupled in a complex way when deciding which detours will be taken. This can lead to a blind
hyperparameter search. Our experiments show that the success of the policy is highly sensitive to
the choices of these two hyperparameters.

Also, the problem described in Section C.2 persists, which means some of the very natural policies
cannot be found with this technique.

D.2 INFORMED TARGETS

While using the SARSA variant has failed as seen in Section D.1.1, we believe that our intuition
about the root of the issues described in Section C.1 was correct. Hence, we decided that an approach
that could better align the update target with the ”actual policy” could still solve the problem with
short-sighted sacrifices. One such way could be accounting for the possibility of actions not being
taken according to the given objective. Here, we will present the approach for two objectives. Its
generalization to K objectives is not necessarily straightforward and we regard it as a future research
direction. To illustrate the idea, assume that Q⋆

1(s
′, a1) > Q⋆

1(s
′, a2) > τ1 and Q⋆

1(s
′, a2) >

Q⋆
2(s

′, a1) for a state s′ in a task with only two actions. Eq. 9 uses R1(s, a, s
′) + γ1(s

′, a1) when
computing update target for Q⋆

1(s, a) as a1 maximizes Q⋆
1 in state s′. However, this is misleading

as a1 will never be chosen in state s′. Instead Q⋆
1(s

′, a2) should be used as a2 maximizes Q⋆
2 in

s′. Notice that this is still different than TL-SARSA as we may be following a completely different
policy. In other words, a2 is used not because it is actually the action taken but it would be the
action taken in the optimal case. We call this ”informed targets” as value functions make ”informed”
updates, knowing what would be the actual action taken. More formally, this means modifying the
update function for the primary objective to:

Q⋆
1(s, a) =

∑
s′∈S

(R1(s, a, s
′) +Q⋆

1(s
′, argmax

π∈Π1

Q⋆
2(s

′, π(s′))P (s, a, s′) (11)

Notice that the target for the objective 1 is computed by choosing the optimal action with respect
to 2. This prevents optimistic updates that happen due to targets computed with actions that never
would be taken. It should be noted that these updates were the reason for the failure mode discussed
in Section C.1. Preventing them solves this issue but brings a different problem: Instability in update
targets. Consider the scenario in Section C.1. If the current policy is going to left in state (2, 2), the
value of going right would be γR. Assuming that the threshold is smaller than γR, at some point
the value of going right would pass the threshold and both going right and left would be equally
good. Once this happens, the update target for going right will become γQ(s,Right), hence it will
start to decrease until it is smaller than the threshold. Then, the target will go back to its original
value, hence resulting in an endless cycle. While it is possible to introduce some buffer in these
updates such that the oscillations do not affect the policy that is being followed, the optimality of
the resulting policy will depend on the initialization.

The update function with buffer hyperparameter b can be obtained by replacing Πi in Section 11
with Π̂i which is defined as:

Π̂i ≜ {πi ∈ Π̂i−1 | Q⋆
i (s, πi(s)) ≥ max

a∈{πi−1(s)|πi−1∈Πi−1}
Q̂⋆

i (s, a)− δi − b,∀s ∈ S} (12)

Notice that this will lead to a smaller oscillation zone which in turn is going to prevent the policy
from oscillating as it still uses Πi. Also, note that the problems in Section C.2 still persists.
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D.3 STATE AUGMENTATION FOR NON-REACHABILITY CONSTRAINED OBJECTIVE CASE

In this section, we will show how a problem where constrained objectives are non-reachability can
be solved by augmenting the state space. This idea of state augmentation has been used before with
slightly different or narrower purposes Geibel (2006).

D.3.1 SINGLE CONSTRAINED OBJECTIVE

When the constrained objective is a non-reachability objective, this can be solved by using state
augmentation that keeps track of obtained cost/reward for the constrained objective so far. In this
section, we will use a different MDP that is inspired by a real-life scenario to also give a more
intuitive example and show the real use of LMDPs.

An example: A car travels across the country using highways. It starts the journey in the city s0
and tries to go to a city sF ∈ SF . Once he reaches a city in the set sF , he will stop traveling.
The highway toll for the highway from the city s to s′ is represented by the function h(s, s′) where
h : S × S → R. The driver has a budget of B dollars and tries to have the best trip within this
budget. His cost within this budget will be reimbursed by his company, so he has no incentive to
spend less as long as he is within the budget. His pleasure from arriving in the city s is given by
p(s) where p : S → R and p(s) = 0,∀s /∈ SF .

Formally, we have two objectives: minimizing the tolls and maximizing pleasure. Minimizing tolls
is constrained/thresholded by the budget B. Maximizing the pleasure is unconstrained. Following
our formulation in Section 3:

• R1(s, a, s
′) = −h(s, s′) and τ1 = −B. Notice again that we expressed the threshold without

discounting. Since we will not be using TLQ, we do not need to find the corresponding dis-
counted threshold. Also, notice that the corresponding discounted threshold actually depends
on the trajectory.

• R2(s, a, s
′) = p(s′).

We can express this two-objective task and preserve the preferences by constructing the following
single-objective task:

• Set of states: Ŝ = S × R where (s, c) means the driver is in the city s and so far the driver has
spent B − c dollars on tolls. Augmented initial state ŝ0 = (s0, B).

• Set of actions: Â = A

• Transition function P̂ : Ŝ ×A× Ŝ → [0, 1] where

P̂ ((s, c), a, (s′, c′)) =

{
P (s, a, s′), c′ = c− h(s, s′)

0, otherwise
(13)

• Reward function R̂ : Ŝ ×A× Ŝ → R

R̂((s, c), a, (s′, c′)) =


0, if s′ /∈ SF

p(s′), else if c′ ≥ 0

λc′, otherwise
(14)

Note that a non-zero reward will be given only when the car reaches a final destination. If the driver
has stayed within the budget, he gets his pleasure value as the reward. If he has exceeded the budget,
he is penalized accordingly with a multiplier λ. Implicitly, we assume that p(s) > 0,∀s ∈ SF .

Also, note that while this reward function specifies the optimal policy correctly, it may not be a good
reward function for learning and exploration purposes. For instance, until the agent learns how to
stay within the budget, all the terminal states will have negative values and non-terminal states will
have higher values. Hence, the agent can get stuck here by trying to avoid terminal states. Realizing
that it can get positive rewards may require a good exploration policy.

This has the following advantages:

• Different thresholds are supported
• Thresholding is intuitive
• Convergence proofs exist.
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D.3.2 OPTIMALITY OF NEW MDP

We can easily show that this single-objective task has the same ordering of trajectories as the original
task. More formally, ζ1 = s10, a

1
0, s

1
1, a

1
1, . . . , s

1
n1 is better than ζ2 = s20, a

2
0, s

2
1, a

2
1, . . . , s

2
n2 under

the original task if and only if the augmented trajectory ζ̂1 is also better than augmented trajectory
ζ̂2 under this single-objective task. Here, we will use the cumulative reward as the optimality metric
when comparing trajectories. For the original task trajectories, we use the thresholded lexicographic
comparison relation defined in Section 3. Note that subscripts n1 and n2 denotes the indexes of ζ1
and ζ2, not the polynomials.

Proof: ζ1 ≥ ζ2 under the original task if and only if one of the following must be true:

1.
∑

ζ1 R1(s, a, s
′),

∑
ζ2 R1(s, a, s

′) ≥ τ1 and
∑

ζ1 R2(s, a, s
′) ≥

∑
ζ2 R2(s, a, s

′)

2.
∑

ζ1 R1(s, a, s
′) ≥ τ1 >

∑
ζ2 R1(s, a, s

′)

3. τ1 >
∑

ζ1 R1(s, a, s
′) ≥

∑
ζ2 R1(s, a, s

′)

We can show that each of these statements implies that the same ordering holds for ζ̂1 ≥ ζ̂2 under
the single objective task. Firstly observe that:∑

ζ̂

R̂(ŝ, â, ŝ′) = p(ŝn(s))

⇐⇒
∑
ζ̂

R̂(ŝ, â, ŝ′) > 0

⇐⇒ ŝn(s) ∈ SF ∧ ŝn(c) ≥ 0

⇐⇒
∑
ζ̂

h(s, s′) ≥ B ⇐⇒
∑
ζ

R1(s, a, s
′) ≥ τ1

Then, for the first case:

∑
ζ1

R1(s, a, s
′),

∑
ζ2

R1(s, a, s
′) ≥ τ1

=⇒
∑
ζ̂1

R̂(ŝ, â, ŝ′) = p(ŝn1(s)) ∧
∑
ζ̂2

R̂(ŝ, â, ŝ′) = p(ŝn2(s))

Also, ∑
ζ1

R2(s, a, s
′) ≥

∑
ζ2

R2(s, a, s
′)

=⇒ p(ŝn1(s)) ≥ p(ŝn1(s))

=⇒
∑
ζ̂1

R̂(ŝ, â, ŝ′) >
∑
ζ̂2

R̂(ŝ, â, ŝ′)

=⇒ ζ̂1 ≥ ζ̂2

For the second case,
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∑
ζ1

R1(s, a, s
′) ≥ τ1 >

∑
ζ2

R1(s, a, s
′)

=⇒
∑
ζ̂1

R̂(ŝ, â, ŝ′) > 0 ∧
∑
ζ̂2

R̂(ŝ, â, ŝ′) ≤ 0

=⇒
∑
ζ̂1

R̂(ŝ, â, ŝ′) >
∑
ζ̂2

R̂(ŝ, â, ŝ′)

=⇒ ζ̂1 ≥ ζ̂2

For the third case, we can observe that:

τ1 >
∑
ζ1

R1(s, a, s
′) ≥

∑
ζ2

R1(s, a, s
′)

=⇒ B >
∑
ζ̂1

h(s, s′) ≥
∑
ζ̂2

h(s, s′)

=⇒ ŝn1(c) ≥ ŝn2(s)

=⇒ λŝn1(c) ≥ λŝn2(s)

=⇒
∑
ζ̂1

R̂(ŝ, â, ŝ′) >
∑
ζ̂2

R̂(ŝ, â, ŝ′)

=⇒ ζ̂1 ≥ ζ̂2

Note that we’ve specified the unconstrained objective as a quantitative reachability objective, ie. it
is non-zero only in the terminal states. Now, we will remove the restriction over p.

Alternative 1: First option is to extend the state space again to keep track of p as well. So, the
MDP will be:

• State Space: ˆ̂S = S × R × R where the state (s, c, p̄) corresponds to accumulating p̄ p(s) so
far.

• Transition function: ˆ̂P : ˆ̂S ×A× ˆ̂S → [0, 1] where
ˆ̂P ((s, c, p̄),a, (s′, c′, p̄′)) (15)

=

{
P̂ ((s, c), a, (s′, c′)), p̄′ = p̄+ p(s′)

0, otherwise
(16)

• Reward function: ˆ̂R : ˆ̂S ×A× ˆ̂S → R where

ˆ̂R((s, c, p̄), a, (s′, c′, p̄′)) =


0, if s′ /∈ SF

p̄′, else if c′ ≥ 0

λc′, otherwise
(17)

Alternative 2: Extending the state space is not always optimal, as it increases the complexity.
Instead, we can try to directly modify 14. With this, we will still use Ŝ and P̂ as the state space and
transition function, respectively.

• Most simply, we can start giving p(s′) reward in the non-terminal states. Then, we can guar-
antee the lexicographic ordering by subtracting a large value Cl that is guaranteed to be larger
than

∑
t p(s

′) from λc′.

ˆ̂R((s, c), a, (s′, c′)) =


p(s′), if s′ /∈ SF

p(s′), else if c′ ≥ 0

λc′ − Cl, otherwise
(18)
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Optimality proofs of these new MDPs are very similar to our proof in Section D.3.2. So, we leave it
to the reader to avoid repeating it.

D.3.3 MULTIPLE CONSTRAINED OBJECTIVES CASE

Our analysis above assumes that there are only two objectives: a constrained primary objective
and an unconstrained secondary objective. However, in that setting, many CMDP algorithms are
readily applicable. Therefore, we are more interested when we have multiple constraints that need
to be solved in the lexicographic order. Yet, extending the approach above to this setting is not
straightforward. To apply it, we need to know which constraints can be satisfied together. More
formally, if the constrained objectives are 1, . . . , (k − 1), we need to find the maximum i such that
there exists a policy that satisfies objectives 1, . . . , (i− 1), i.e. can reach a state (s, c1, c2, . . . , ci−1)
such that s ∈ SF and c1, c2, . . . , ci−1 ≥ 0. We identified three different approaches that could be
used for this but we believe future work is needed to develop more efficient methods.

One-by-one The simplest method to solve tasks with multiple constrained objectives is reminis-
cent of linear search algorithm. We can start with the first (most important) constraint and see if we
can find a policy that satisfies it, i.e. can reach (s, c1) such that s ∈ SF and c1 ≥ 0 from sinit. If
such a policy exists, we can introduce the second constraint to see if a policy that satisfies both of
them simultaneously exists. Continuing in this fashion, it can be found up to which objective the
agent can satisfy simultaneously. However, this method can be prohibitively expensive as it requires
solving O(k) subproblems. More importantly, it is very hard if not impossible to know whether a
subproblem is not solvable or just taking too long to learn.

For this method, we can construct the following reward function for each i value in different ways.
An approach would be maximizing the worst violated constraint:

R̂((s, c1, . . . , ci−1),a, (s
′, c′1, . . . , c

′
i−1)) = (19)

R(s, a, s′), if s′ /∈ SF

R(s, a, s′), else if c′j ≥ 0 ∀j < i

λminj c
′
j − Cl, otherwise

(20)

Where R is the reward function of the unconstrained objective in the original MDP and Cl is an
upper bound on the unconstrained reward that can be collected during an episode.

Binary Search As the name suggests, this method is inspired by binary search algorithm. As-
suming the constrained objectives are 1, . . . , (k − 1), we can start by trying to solve constraints
1, . . . , ⌊k2 ⌋, then we can try 1, . . . , ⌊ 3k4 ⌋ or 1, . . . , ⌊k4 ⌋ depending on whether it was solvable or
not, respectively. While this method is faster than one-by-one, it still suffers from the same halting
problem. We can use Eq. 19 for this approach too.

Dynamic Search This method is not concretized and is intended mostly as an idea for future re-
search. Hayes et al. (2020) presents an approach to set the threshold values for TLQ dynamically,
depending on the attainable performance up to that point in the training. Similarly, we can intro-
duce and remove constraints dynamically during the training without waiting for the algorithm to
successfully converge for a subproblem.

E CONE PROJECTION

In this section, we show how the projection equation in Eq. 4 is derived. For the sake of com-
pleteness, we start with some simpler and well-known projections and move to the derivation of
Eq. 4.

E.1 ORTHOGONAL PROJECTION ONTO A HYPERPLANE

One of the most well-known projection tasks is projecting a vector y ∈ Rn onto a hyperplane Ha

that passes through origin, specified by its normal vector a ∈ Rn as Ha = {x ∈ Rn | ⟨x,a⟩ = 0}
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where ⟨⟩ denotes the dot product defined as vTa =
∑

i viai. Projection of y onto Ha is notated as
PH

a (y) and defined as PH
a (y) = argminv∈Ha

∥v − PH
a (y)∥. ∥∥ denotes the L2 norm defined as

∥v∥ =
√
vTv =

√∑
i

v2
i

PH
a (y) can be found easily by using well-known result y − PH

a (y) ∥ a, i.e. the projection error is
parallel to the normal vector of the hyperplane. Then, there is a c ∈ R such that y − PH

a (y) = ca.

y − PH
a (y) ∥ a

=⇒ PH
a (y) = y − ca

=⇒ ⟨PH
a (y),a⟩ = ⟨y,a⟩ − c⟨a,a⟩

=⇒ 0 = ⟨y,a⟩ − c∥a∥2

=⇒ c =
⟨y,a⟩
∥a∥2

=⇒ PH
a (y) = y − ⟨y,a⟩

∥a∥2
a

E.2 PROJECTION ONTO A HALFSPACE

In many cases, we may want to not project a vector that is already on one side of the hyperplane. For
example, if we want to project a vector onto a feasible set, the vector that is already in the feasible set
should not be projected. This idea can be formalized by extending the definition above to halfspaces.
A positive halfspace S+

a is defined as S+
a = {x ∈ Rn | ⟨x,a⟩ ≥ 0}. This can be thought of as the

set of vectors with which a makes an angle less than or equal to π
2 . We can define the projection y

onto S+
a as follows:

P S+

y (a) =

{
y, y ∈ S+

a

PH
y (a), otherwise

(21)

Note that the piecewise function handles y ∈ S+
a and y ̸∈ S+

a cases separately.

E.3 PROJECTING A VECTOR ONTO A CONE

While halfspaces are one of the most common sets in practice, they can be limiting in many cases.
A natural extension to this idea would be limiting the set to vectors with which a makes an angle
π
2 −∆ for some 0 ≤ ∆ ≤ π

2 . The angle between two vectors is defined using dot product:

⟨v, u⟩ = cos∠v, u∥a∥∥x∥
Note that since cos(∆) = cos 2π −∆, the ∠v, u can take two values between 0 and 2π. For
simplicity, we will always talk about the smaller angle, i.e. ∠ : Rn × Rn → [0, pi].

This would be a hypercone which simplifies to a halfspace when ∆ = 0.

Let C∆
a be a hypercone with axis a ∈ Rn and angle π

2 −∆, i.e.

C∆
a = {x ∈ Rn | ∥x∥ = 0 ∨ aTx

∥a∥∥x∥
≥ cos (

π

2
−∆)} (22)

which uses the dot product formula above to see if cosine of the angle between a and x is greater
than cosine of π

2 −∆. For 0 ≤ ∆ ≤ π
2 , this corresponds to the angle between a and x being in the

interval [0, π
2 −∆].

Then, the projection of a vector g ∈ Rn onto C is defined as

gp
C = argmin

ĝ∈C
∥ĝ − g∥2 (23)
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Solving this equation is not as straightforward as for the halfspaces. We will first show that gp is
planar with g and a, i.e. they can be written as linear combinations of each other. are all on the
same plane. This is intuitive and well-known in lower dimensions, but below can be seen a formal
proof for higher dimensions. Once this is proven, we can utilize some two-dimensional geometric
intuition to simplify the algebra.

E.4 PROOF OF PLANARITY

The projection is a constrained optimization problem:

min ∥x− g∥2

subject to
aTx

∥a∥∥x∥
≥ cos (

π

2
−∆)

If we can show that the solution to this vector is planar with g and a, we will be done. The solu-
tion to this constrained optimization problem should satisfy Karush-Kuhn-Tucker (KKT) conditions
which generalize the Lagrange Multiplier method to problems with inequality constraints. However,
applying KKT conditions in this format does not provide a clean result. Therefore, we will prove a
stronger claim that gives cleaner KKT conditions:

Lemma E.1. For any fixed length x, the projection is minimized when x, g, and a are planar.

Proof. This gives us the following modified optimization problem with an additional constraint.
Now, we will show that the planarity does not depend on ∥x∥, which will be denoted as c.

min f(x) = ∥x− g∥2

subject to r(x) =
aTx

∥a∥∥x∥
≥ cos (

π

2
−∆) = sin∆

h(x) = ∥x∥ = c

Swapping norms with their dot product equivalents (replacing the norm in the objective and equality
constraint with a norm square for conciseness) and writing the remaining in the standard format
gives us:

min f(x) = xTx− 2gTx+ gTg

subject to r(x) = sin∆− aTx√
aTa
√
xTx

≤ 0

h(x) = xTx− c2 = 0

KKT conditions for this problem require that any minimum point x̂ should satisfy the following
condition Chong & Zak (2004):
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∇f(x̂) + λ∇h(x̂) + µ∇r(x̂) = 0

=⇒ 2x̂− 2g + λ2x̂+ µ
a(
√
aTa

√
x̂T x̂)− 1

2

√
aTa√
x̂T x̂

2x̂(aT x̂)

(x̂T x̂)(aTa)
= 0 x̂T x̂ = c2 from feasibility

=⇒ 2x̂− 2g + λ2x̂+ µ
a(c
√
aTa)−

√
aTa
c x̂(aT x̂)

(c2)(aTa)
= 0

=⇒ 2x̂− 2g + λ2x̂+ µ
ca− aT x̂

c x̂

c2
√
aTa

= 0
aT x̂√
x̂T x̂

= sin∆
√
aTa C.S.

=⇒ 2x̂− 2g + λ2x̂+ µ
ca− sin∆

√
aTax̂

c2
√
aTa

= 0

=⇒ 2x̂− 2g + λ2x̂+ µ
a

c
√
aTa

− µ
sin∆

c2
x̂ = 0 Reorganize the terms

=⇒ x̂(2 + 2λ− µ
sin∆

c2
) = 2g − µ

a

c
√
aTa

Since gp is such a minimum point, the above analysis holds for it too. Hence, it can be written as a
linear combination of a and g. This means that the three vectors are planar.

Note that we can see another important result from the analysis above. The complementary slackness
condition of KKT requires that µr(x̂) = 0. However, if µ = 0, the last line equation in the proof
simplifies to

x̂(2 + 2λ) = 2g

If (2 + 2λ) ≥ 0, it means g and x̂ in the same direction. This is only possible if g is already in the
hypercone. If (2 + 2λ) < 0, this means g and x̂ are in the opposite directions which cannot be the
projection, as choosing 0 vector would give a smaller projection error. Hence, unless g is already in
the hypercone and does not require a projection, r(x̂) should be 0. That means the angle between a
and x̂ is π

2 −∆.

E.5 DERIVATION OF THE PROJECTION FORMULA

Now that it is known that all three vectors are planar, we can just use two-dimensional geometry to
reason about it and derive the formula. This can be done as these three vectors in Rn will span a
two-dimensional subspace of Rn unless they are all collinear, i.e. scalar multiplicative of each other.
This would mean that a and g are already in the same direction and no projection is needed, which
is a special case we will consider separately. Also, any 2-dimensional subspace of Rn is isomorphic
to R2, i.e. identical in structurelin (2021). Figure 6 shows the case when the angle between a and
g, ϕ, is larger than π

2 . It can be confirmed that the other configurations like will result in the same
equations too. Note that when writing the equations below, we considered when g is outside of the
cone. When g ∈ C, we will simply call gp = g similar to the piecewise function in Section E.2.

Firstly, we will find the direction of the projection. Let p′ be a vector with the same direction as gp

and it can be written as below.

p′ = g + αa
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Figure 6: This figure shows how the vectors would be positioned on a plane. The orange region
shows the cone. The angle between a and g, ϕ, is omitted to not crowd the figure.

Then, we can find α as below by using the law of sines:

α∥a∥ = ∥g∥ sin (ϕ− π

2
) + ∥g∥ cos (ϕ− π

2
)

1

sin (π2 −∆)
sin∆

=⇒ α∥a∥ = −∥g∥ sin (π
2
− ϕ) + ∥g∥ cos (π

2
− ϕ)

1

sin (π2 −∆)
sin∆

=⇒ α∥a∥ = −∥g∥ cosϕ+ ∥g∥ sinϕ 1

cos∆
sin∆

=⇒ α∥a∥ = ∥g∥(sinϕ 1

cos∆
sin∆− cosϕ)

=⇒ α =
∥g∥
∥a∥

(sinϕ
1

cos∆
sin∆− cosϕ)

=⇒ α =
∥g∥
∥a∥

(sinϕ tan∆− cosϕ)

=⇒ p′ = g +
∥g∥
∥a∥

(sinϕ tan∆− cosϕ)a

This p′ has the correct direction but not necessarily the correct norm to minimize the projection error.
The correct projection will be gp = kp′ where k ∈ R. We can find the k using the well-known rule
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that the projection error is perpendicular to the projection.

⟨g − kp′,p′⟩ = 0

=⇒ ⟨g,p′⟩ − k⟨p′,p′⟩ = 0

=⇒ ∥g∥∥p′∥ cos (∆ + ϕ− π

2
)− k∥p′∥2 = 0

=⇒ ∥g∥∥p′∥ cos (π
2
−∆+ ϕ)− k∥p′∥2 = 0

=⇒ ∥g∥∥p′∥ sin (∆ + ϕ)− k∥p′∥2 = 0

=⇒ ∥p′∥(∥g∥ sin (∆ + ϕ)− k∥p′∥) = 0

=⇒ ∥g∥ sin (∆ + ϕ)− k∥p′∥ = 0 if ∥p′∥ ≠ 0

=⇒ ∥g∥ sin (∆ + ϕ) = k∥p′∥

=⇒ k =
∥g∥
∥p′∥

sin (∆ + ϕ)

The same result also could be obtained by solving another optimization problem with k as the
variable. Combining the formula for p′ and k gives the formula for gp.sec:supp:pg:exp:reachability

Moving forward, we’ll assume a function projectCone(g,a,∆) which returns the projection of g
onto C∆

a possibly handling g ∈ C∆
a and g /∈ C∆

a cases separately.

F LEXICOGRAPHIC PROJECTION ALGORITHM

In this section, we start by giving some background on gradients and directional derivatives that
is necessary to understand our algorithm. Then, we share the formulation of the lexicographic
optimization problems we solve. Finally, we give some further justification on why we need cone
projection instead of halfspace projection and share the remaining results with our algorithm that
was left out of the main paper due to space constraints.

F.1 BACKGROUND ON GRADIENT AND DIRECTIONAL DERIVATIVES

Gradient of a function gives the direction and rate of the fastest increase from point p. Moreover,
directional derivative of F at p along direction u, i.e. ∂F

∂u (p), can be computed as ⟨u,∇F (p)⟩.

Intuitively, the directional derivatives give the rate of change ∇F (p) in the given direction. As can
the dot product implies, this rate is the largest when the angle between u and ∇F is zero. In other
words, the gradient gives the direction of the fastest increase.

Using directional derivatives, we can reason about how changes to p affect the value of F . For
example, since the gradient has the fastest instantaneous rate of change, F (p+ ϵ ∇F (p)

∥∇F (p)∥ ) ≥ F (p+

ϵ u
∥u∥ ),∀u ∈ Rn for sufficiently small ϵ.

Similarly, if ∠u,∇F (p) ≤ π
2 , F (p+ ϵu) ≥ F (p) for sufficiently small ϵ. This can be confirmed by

computing the directional derivative using ⟨u,∇F (p)⟩ = ∥u∥∥∇F (p)∥ cos∠u,∇F (p). In other
words, using the directional derivatives, we can obtain a direction of non-decrease for a sufficiently
small step size.

F.2 FORMULATION OF THRESHOLDED LEXICOGRAPHIC MULTI-OBJECTIVE OPTIMIZATION
PROBLEMS

A generic multi-objective optimization problem with K objectives and n parameters can be formu-
lated as:

Given a function F : A → RK where A ∈ Rn and a comparison relation ≥c for value vectors in
RK , find an element θ∗ ∈ A such that f(θ∗) ≥c f(θ) for all θ ∈ A.

Notice that when we have multiple objectives, the gradients will form a K-tuple, G =
(∇F1,∇F2, · · · ,∇FK), where ∇Fi is the gradient of ith component of F .
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Different instantiations of the comparison relation lead to various multi-objective problem families.
In the case of Lexicographic Multi-Objective Optimization, the comparison relation >c, is defined
as

v1 >c v2 ⇐⇒ ∃i < K s. t. ∀j < i v1(j) ≥ v2(j))

∧ v1(i) > v2(i))

In Thresholded Lexicographic Multi-Objective Optimization, a threshold vector τ ∈ RK−1 is intro-
duced to express the values after which the user does not care about improvements in that objective.
This new comparison relation can be denoted by >(c,τ) which is defined as:

u >τ v iff there exists i ≤ K such that:

• ∀j < i we have uj ≥ min(vj, τj); and
– if i < K then min(ui, τi) > min(vi, τi),
– otherwise if i = K then ui > vi.

The relation ≥τ is defined as >τ ∨ =.

Notice that this completely parallels the definition of LMDPs from Section 3.

F.3 JUSTIFICATION OF CONE PROJECTION

Since thresholded lexicographic multi-objective optimization problems impose a strict importance
order on the objectives and it is not known how many objectives can be satisfied simultaneously be-
forehand, a natural approach is to optimize the objectives one-by-one until they reach the threshold
values. However, once an objective is satisfied, optimizing the next objective could have a detrimen-
tal effect on the satisfied objective. This could even lead to the previous objective failing. While
we can always go back to optimizing this failing objective, this would be inefficient, even worse,
potentially leading to endless loops of switching between objectives.

However, we could limit our search for a satisfying point for the new objective to the directions
not detrimental to already satisfied objectives by using our results about directional derivatives. For
simplicity, assume that we have a primary objective F1 which is satisfied at the current point θn and
a secondary objective F2 which we are trying to optimize next. ∇uF1, the change in F1 along a
direction u, is equal to ⟨u,∇F1(θn)⟩ = ∥u∥∥∇F1(θn)∥ cos(∠u,∇F1(θn)), choosing a direction
which makes an angle ϕ ∈ [−π

2 ,
π
2 ] with ∇F1(θn) would make the directional derivative non-

negative. Therefore, updating θ as θn+1 = θn + ϵu with an infinitesimal ϵ would not reduce the
value of F1. If ∇uF2 is positive, we can optimize F2 without jeopardizing F1. Note that the same
logic hold even if we have k already satisfied objectives F1, . . . , Fk and now optimizing Fk+1 as
long as ∀i ≤ k∇uFi ≥ 0.

While any such u allows us to carefully optimize our new objective F2, we should pick an u with
maximum ∂F2

∂u (θn) to optimize F2 most efficiently. While we know that∇F2(θn) has the maximum
directional derivative, it may not satisfy our previous requirements. Instead, we can use the vector
projection to find the u which minimizes ∥u −∇F2(θn)∥ under the constraint ∇uF1 ≥ 0. Notice
that non-negative directional derivative means that u lies on the positive halfspace of ∇F1(θn), i.e.
u ∈ S+

u . So, projecting ∇F2(θn) onto S+
∇F1(θn)

will give us the u which satisfies the requirement
and is closest to∇F2θn, i.e. has the largest directional derivative. As a special case, when∇F1 and
∇F2 point in opposite directions, this projection will give a zero vector which means that we cannot
optimize F2 without sacrificing F1. This point would be locally Pareto optimal. In general, itera-
tively projecting∇Fk+1(θn) on the positive halfspaces of∇F1(θn), . . . ,∇Fk(θn) gives the desired
vector as long as the final vector satisfies the requirements. If it does not satisfy the requirements,
this point can be called a locally Pareto optimal point.

While the approach above has the theoretical guarantees for the infinitely small step size, this does
not translate to practice as the step sizes are not small enough. For example, Figure 7 shows how a
direction that lies on the positive halfspace of the gradient can lead to a decrease. It can be also seen
that unless the step size is infinitely small, this would always lead to a decrease. We can overcome
this issue by generalizing halfspace to a hypercone for which the central angle is π

2 − ∆ where ∆
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Figure 7: This figure shows why projecting onto the positive hyperspace is not always enough. The
curves show the level curves of a function F1. ∇F p

2 shows the projection of ∇F2 on the positive
halfspace of ∇F1. Note that following∇F p

2 reduces the function from 0.5 to 0.4.

is the hyperparameter of conservativeness. For ∆ = 0, this would be the halfspace case introduced
above. Figure 8 shows how hypercone projection differs from halfspace projection and keeps the
function above or at the current level for reasonably large step sizes.

F.4 EXPERIMENTS

In this section, we present the rest of the results for the experiments shown in Figure 2. All of the
experiments are done using the same benchmark problem described in the main paper.

Figure 9 demonstrates how the value changes shown in Figure 2 were reflected on the parameter
space. The figure shows the trajectory the algorithm takes over the level curves of the functions.
Notice that F2, in blue, is completely ignored until the threshold for F1 is reached. Then, the algo-
rithm optimizes F2 while respecting the passed threshold of F1, indicated by its trajectory almost
along the level curve of F1.

Repeating the same experiment with AC heuristic and b = 0.01 yields the results shown in Figure 10
and Figure 11. Notice that the highest value we were able to obtain for F2 was −0.580 without AC
heuristic; but this was improved to −0.554 with AC. This is because AC prevents unnecessarily
improving F1 over the threshold. This can be observed from the final values of F1 which is −0.450
without AC and−0.496 with AC. The downside is losing the smooth and safe trajectory allowed by
our vanilla algorithm, indicated by the zig-zags in Figure 10 and Figure 11. The zig-zags represent
the corrections for sacrificing too much from F1 when optimizing F2.

G USING LEXICOGRAPHIC PROJECTION ALGORITHM IN RL

In this section, we first give the REINFORCE algorithm we use as the basis for our Lexicographic
REINFORCE algorithm for easier comparison. Then, we share further details of our experiments.
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Figure 8: A visualization of cone projection. The dashed line shows the boundaries of the cone
which are two lines in two dimensions. Notice that following ∇F p

2 keeps the function from at or
above 0.5 unless a very large step size is chosen.

G.1 REINFORCE ALGORITHM

The pseudocode for REINFORCE algorithm that we will use as the basis for our adaptation (Algo-
rithm 5) can be seen in Algorithm 4.

Algorithm 4 Vanilla REINFORCE
Process REINFORCE:

Initialize policy function π(a|s, θ) with random parameter θ
for ep = 1, Ne do

Generate an episode S0, A0, R1, . . . , ST−1, AT−1, RT and save lnπ(At|St) at every step.
GT+1 ← 0
for t = T, 1 do

Gt ← Rt + γGt+1

end
L← −

∑
t=0,T−1 lnπ(At|St)Gt+1

Update θ by taking an optimizer step for loss L

end
return π(a|s, θ)

Note that Algorithm 4 can be used with optimizers other than vanilla gradient descent. In our
experiments, we found that Adam is easier to use with the tasks at hand. Similarly, we found that
using Adam optimizer is better than vanilla gradient descent for our adaptation too.
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Figure 9: Behavior of the algorithm without the active constraints heuristic and hyperparameters
α = 0.2 and ∆ = π

90 . The red and blue curves show the level curves of F1 and F2, respectively. The
single yellow curve shows the threshold for F1. The black line shows the trajectory of the solution,
while the red and blue arrows show the gradients w.r.t. F1 and F2, respectively.
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Figure 10: Behavior of the algorithm with the active constraints heuristic and b = 0.01. The rest of
the hyperparameters are as described in Figure 9.

G.2 OUR ADAPTATION OF REINFORCE

Algorithm 5 Lexicographic REINFORCE
Process REINFORCE(τ,∆, AC, b,Ne)):

Initialize policy function π(a|s, θ) with random parameter θ
for ep = 1, Ne do

Generate an episode S0, A0, R1, . . . , ST−1, AT−1, RT and save lnπ(At|St) at every step.
M ← ∅
F ← 0
for o = 1,K do

GT+1 ← 0
for t = T, 1 do

Gt ← Rt + γGt+1

Fo ← Fo +Rt

end
L← −

∑
t=0,T−1 lnπ(At|St)Gt+1

Compute the gradient of L with respect to θ and append it to M

end
d = FindDirection(M,F, τ,∆, AC, b)
Use d as the gradient for the optimizer step to update θ.

end
return π(a|s, θ)
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Figure 11: The changes in the function values for the experiment described in Figure 10.

MAZE
__________
|__|G_|__| 4
|__|hh|hh| 3
|__|__|__| 2
|HH|HH|__| 1
|S_|__|__| 0
0 1 2

Figure 12: The maze to be used in Reachability experiment.

G.3 EXPERIMENTS

In this section, we share the details of the experimental setup for the adapted REINFORCE algo-
rithm.

G.3.1 POLICY FUNCTION

In both experiments, we use a two layer neural network (LeCun et al. (2015)) for policy function.
We represent the state via one-hot encoding (Harris & Harris (2015)), hence the input dimension
is the same as the size of state space. For example, 20 for the maze in Figure 3. Then the hidden
layer is a fully connected layer with 128 units and they use ReLU activation function Agarap (2018).
We also used a dropout layer (Srivastava et al. (2014)) with drop probability 0.6. Finally, the output
layer has 4 units, representing the four valid actions in our benchmark. The outputs of these units are
converted to action probabilities by applying a softmax function with temperature 10 LeCun et al.
(2015). The temperature hyperparameter allows making the policy less deterministic by making the
action probabilities closer to each other. This makes sure that the policy keeps exploring so it does
not get stuck in local minima. This is particularly important for our algorithm, considering that the
learning of the less important objectives does not start until the important ones are learned.

G.3.2 REACHABILITY EXPERIMENT

For Reachability experiment, we use the maze in Figure 12. As we only care about the agent
eventually reaching the goal, the agent can completely avoid going on a bad tile. All the policies
where it reaches the goal but goes through a bad tile in the process will be dominated by this policy.
Hence, we will expect our agent to learn the policy where it eventually reaches the goal and never
steps on a bad tile.
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Figure 13: Average satisfaction frequency of 10 seeds for the experiment described in Section G.3.2.
The shaded region shows a confidence interval of two standard deviation width around the mean.

We run Algorithm 5 for Ne = 4000 episodes and we repeat our experiment with 10 different ran-
dom seeds. As the policy we use is stochastic, different seeds give significantly different results.
Figure 13 summarizes the performance of 10 seeds. The plot shows the ratio of the successful tra-
jectories out of 100 trajectories where successful is defined as satisfying the reachability constraint
without stepping on a bad tile. The line shows the mean of 10 different seeds where the shaded
region shows the variance in the experiment as two standard deviations around the mean. It can be
clearly seen that as the training progresses, the satisfaction frequency increases. Out of the 10 seeds,
4 find policies that have 90% success over 100 episodes.

We can also take a closer look into how the training progresses for a successful seed. Figure 14
shows how the satisfaction frequency for each objective changes throughout the training. It can
be seen that the primary objective, reaching the goal eventually starts with a high frequency but
drops a little bit while the secondary is being learned. Then, the frequencies for both objectives start
to increase together. Intuitively, the initial drop represents when the agent starts to consider ”do
nothing” policies which reduces the success of the primary objective. But the agent then learns that
it can still maintain 0 penalties without just staying in place.

G.4 ADDITIONAL EXPERIMENTS WITH MORE OBJECTIVES AND ADDITIONAL BASELINES

In this section, we will present additional results using a new benchmark domain from the literature.
Fruit Tree Navigation (FTN) Yang et al. (2019) requires the agent to explore a full binary tree of
depth d with fruits on the leaf nodes. Each fruit has a randomly assigned vectorial reward r ∈ R6

which encodes the amount of different nutrition components of the fruit. The agent needs to find
a path from the root to the fruit with that fits to the user preferences by choosing between left and
right subtrees at every non-leaf node.

This domain perfectly highlights the benefits of thresholded lexicographic user preference compared
to linear scalarization. The user can have a certain threshold that needs to be reached for each
nutrition component and an importance order between these components that should be followed
if it is not possible to satisfy all of the thresholds. Using linear scalarization in this case requires
knowing the reward values of all of the fruits beforehand, deciding which fruit would fit the user
preference, and finding a weight vector ω for which the desired fruit is better than others.
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Figure 14: Satisfaction frequency for a single seed for the experiment described in Section G.3.2.

Figure 15 shows the need for the ∆ parameter. It can be seen that using just hyperplanes as done in
Uchibe & Doya (2008) fails this task. Similarly, TLQ agent also fails to find the desired leaf.
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Figure 15: Probability of reaching the desired leaf, averaged over three different random seeds. ∆
values represents conservativeness hyperparameter of the hypercone in degrees.
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